
- 1 -

Collective Action and Communal Resources in Open Source

Software Development:

The Case of Freenet1

Georg von Krogh

Stefan Haefliger

Sebastian Spaeth

Institute of Management

University of St. Gallen, Switzerland

stefan.haefliger@unisg.ch

May 2003

We know that the postindustrial society is new because it triggers new forms of collective action

- Jean L. Cohen

Abstract

Building on resource mobilization theory, we explore three distinct rewards for individuals to engage in

innovative collective action, namely open source software development. The three rewards, which we term

communal resources, are reputation, control over technology, and learning opportunities. The collective action

(the open source software development project) produces the communal resources in parallel with the actual

product (software) and mobilizes programmers to spend time and effort, and contribute their knowledge to the

project. Communal resources appear as a byproduct to the production process and represent a public good of

second order. We show that they increase in value for individuals along with their involvement in the

community. Empirical data from Freenet, an open source software project for peer-to-peer software, illustrates

both the levels of involvement and the communal resources.

Keywords: technological innovation, collective action, resource mobilization theory, Open Source Software

development

1 We gratefully acknowledge the efforts of Eric von Hippel, Karim Lakhani, Christina Wyss, Marla Kameny and
participants at various research seminars,

- 2 -

1. Introduction

Society has a vital interest in encouraging and rewarding technological innovation.

Presently, the private investment model suggests innovation will be supported by private

investment and that private returns can be appropriated from such investments (Demsetz,

1967). To encourage private investment in innovation, society grants innovators limited rights

to the innovations they generate via intellectual property law mechanisms such as patents,

copyrights, and trade secrets. These rights assist innovators in obtaining private returns from

their innovation-related investments (Dam, 1995; Liebeskind, 1996). At the same time, the

limited monopoly control that society grants to innovators under the private investment model

and the private profits they reap represent a loss to society relative to the free and unrestricted

use by all of the knowledge that the innovators have created. However, society elects to suffer

this social loss in order to increase innovators’ incentives to invest in the creation of new

knowledge.

Open source software projects
i
 are becoming a significant economic and social

phenomenon that runs counter to this private investment model. Thousands of Free and Open

Source software projects exist today. Sourceforge.net, a host of such projects, report more

than 600.000 participants working on more than 60.000 projects. The number of users of the

software ranges from few to many millions, and users include individuals, firms, and national

governments. Well-known examples of open source software where many users benefit are

the following; the Linux kernel of the GNU/Linux operating system, the GNU Network

Object Model Environment (GNOME), which is software for a graphical desktop

environment, the Perl programming language, Apache, the software for Internet servers, and

the Internet e-mail engine SendMail. Counter to the private investment model, such projects

produce software innovations that are public goods characterized by non-excludability and

non-rivalry (Olson, 1965: 14). Open source software is usually made publicly accessible and

one user's application of the software does not diminish any other person's utility derived from

the software. Open source software is protected by licenses that do not secure innovator's

profits, but rather the rights of users to download the code, investigate, modify, apply and

redistribute the software for free. Thus, the developer both allows and promotes knowledge

sharing through the legitimate distribution of the software. Therefore, open source software

development projects avoid the social loss problem that is associated with the restricted access

to knowledge of the private investment model (von Hippel and von Krogh, 2003). However,

- 3 -

they also create a significant puzzle, as stated by two economists Josh Lerner and Jean Tirole

(2000), who have posed the following qestion regarding the open source software

phenomenon: “Why should thousands of … programmers contribute freely to the provision of

a public good?” As a public good, open source software does not yield the same opportunities

developers could obtain by appropriating returns from their investment in a product protected

by intellectual property rights. Also, as a public good, open source software are subject to the

problem of free riding, where any potential beneficiary of the software has the option to hold

back her own development efforts, waiting for someone else to produce it. Conventional

wisdom suggests that for this beneficiary to contribute software code, sufficient incentives

must be available encouraging contribution and punishing defection (Olson, 1965). Someone

must bear the cost of incentives and as well mechanisms to control and safeguard the

programming efforts of the beneficiary. However, free riding is also inauspicious to

provisions of the public good (of first and second order): this is frequently referred to as the

collective action dilemma in the literature (Oliver, 1993). In other words, why should open

source software development projects exist at all?

For several decades, resource mobilization theory has studied the conditions necessary

for collective action to happen in society. In particular, authors have been interested in

characteristics of organizations that provide members with sufficient rewards to act

collectively (e.g. McCarthy and Zald, 1977). In this paper, against the backdrop of resource

mobilization theory, we pose the following question: What are the sufficient conditions that

mobilize programmers to contribute freely to the provision of a public good? Based on an

exploratory case study of Freenet, a project developing sophisticated software for peer-to-peer

file sharing over the Internet, we show that in the collective action of producing open source

software, the project in parallel produces a set of communal resources. These resources

represent a public good of the second order, and resolve the collective action dilemma

referred to earlier. Communal resources are collectively produced by the project, and provide

individual rewards for developers, and these rewards increase with the developers’

involvement in the open source project. The paper is organized as follows: Section 2 briefly

introduces the open source software phenomenon for the benefit of the unfamiliar reader.

Section 3 discusses the theory we use to generate the research question and interpret the case

data. Section 4 provides an overview of our research methods, and Section 5 a description of

the case. Section 6 demonstrates communal resources in Freenet, and Section 7 concludes the

paper by discussing implications for theory and research.

- 4 -

2. The open source software phenomenon

Open source software development is radically different from software production in

the private-investment model. The first and obvious contrast is the work of hackersii and their

communal practices of sharing software code. Open source software development projects

were first recorded among communities of hackers, and particularly a group of programmers

housed at the MIT’s Artificial Intelligence Laboratory in the 1960s and 1970s (Levy, 1984).

Programmers routinely exchanged software with each other and built upon each other’s

software both individually and collaboratively. In such hacker communities the sharing of

software, collaborative learning, and openness became part of everyday life. Rarely did

people question the economic rationale of their practices (Levy, 1984). With the emergence of

the Internet, the communal practices among hackers began to spread rapidly throughout the

world (Himanen, 2001; Tuomi, 2002).

In the 1980s software development became increasingly commercialized (Cusumano,

1992). The incentive to innovate for many firms in the software industry, such as Microsoft,

Sun Microsystems, and SAP, was safeguarded through efficient regimes of intellectual

property protection. Innovators began to protect their software source code
iii

. A technical

protection mechanism for proprietary software was to hide the human readable source code

from the user so that he or she could not study or modify it (e.g. Moerke, 2000). Only the user

interface, such as a word-processor, as well as the machine code became available to the user.

Moreover, innovators protected proprietary software by copyright and patents (Dalle and

Jullien, 2003; Simon, 1996). A software license allows an individual or group to use a piece

of software for a certain purpose and/or period of time. Often this right to use is traded against

a royalty paid to the producer of the software. A commercial firm, finally, may have software

patents that cover particular innovative features of software often in conjunction with a

business process, such as an algorithm for searching through very large amounts of data in a

customer database (Mykytyn, Mykytyn, Bordoloi, McKinney, & Bandyopadhyay, 2002).

In the early 1980’s a number of hackers led by Richard Stallman, a highly experienced

programmer at MIT’s Artificial Intelligence Laboratory, were especially concerned by the

gradual loss of access to collectively developed source code. They also viewed with suspicion

the general trend towards the creation of proprietary software packages and the release of

software in forms that could not be studied or modified by everyone (Moody, 2001).

Stallman's pioneering idea was to use the existing mechanism of copyright law to create a

- 5 -

new form of license, whereas a software author uses his or her own copyright license or

affixes any of a number of standard licenses to the code in order to guarantee a number of

rights to all future users, a technique called copyleftiv. Typically, these rights ensure that a user

possessing a copy of an Open Source software program has the legal right to use it, to study

the software’s source code, to modify the software, and to distribute modified or unmodified

versions of it to others.

The hacker practices of software development also differ radically from commercial

software projects. Open Source software projects are initiated by an entrepreneur and rely on

voluntary, collective participation of individual developers from technical communities or

organizations who contribute by virtue of solving their specific technical problems. The

developers are rarely paid for their services and normally there is no contract governing the

relationship between the project and the developer (Tuomi, 2002). In contrast, for proprietary

software projects, the entrepreneur uses the two mechanisms of protection for rent

appropriation. These are most effectively executed in the firm (Liebeskind, 1996), because it

secures the continued collaborative efforts of other developers, minimizes free-riding and

opportunism among developers, as well as secure firm-specific learning and cash flow needed

for developing future product generations (e.g. Conner and Prahalad, 1996; Meyer and Lopez,

1995; Young, Smith, & Grimm, 1996). In proprietary software development the relationship

between the firm and developers is therefore regulated by contract and monitored for

compliance (Austin, 2001).

In sum, the combination of a regime of protection of user's rights to the software and

the specific hacker practices of voluntarily developing software is surprising and begs the

question of what conditions mobilize programmers to contribute freely to the provision of a

public good. In the next section we turn to resource mobilization theory for possible answers

to this question.

3. Theory

There exist many legitimate and important ways of studying collective action in the

Open Source software movement, ranging from the new social movement theories' analysis of

political and cultural aspects of the hacker communities (see Buechler, 1995 for a review), to

rational choice theories' analysis of cost and benefits of individual developers' participation

(see Ostrom, 1998 for a review and extension). However, our interest in this paper was

- 6 -

generated mainly from Lerner and Tirole’s observations of the "irrational", voluntary aspects

of the public good production, and the intriguing puzzle they formulate. Beyond the

individual interest and motivations of developers to contribute to the public good, Open

source software projects, such as the Linux project (Moon and Sproull, 2000) and the Apache

project (Lakhani and von Hippel, 2003), are also social movements that mobilize resources

for this production, and within a rational choice and instrumentalist framework of analysis

these projects derive their own status and deserve further examination. Hence, our research

question can be considered a reformulation of Lerner and Tirole’s question: What are the

sufficient conditions that mobilize programmers to contribute freely to the provision of a

public good?

Developed in opposition to a Durkeheimian view of collective action, which is

described as the result of dark irrational passions of movement members and the breakdown

of society’s normative control over individuals, resource mobilization theory emphasized the

instrumental motivations of groups forming social movements. Whereas breakdown theories

capture the unrest and mal-integration behind non-routine collective action such as riots and

rebellion, resource mobilization theory best explains routine collective action such as rallies

and protests (Piven and Cloward, 1992; Useem, 1998). The resource mobilization perspective

argues that organization underlines successful collective action projects (Tilly, 1978),

including the professionalization of such organizations, the career patterns of social

movement personnel, and the emerging social movement industries (McAdam, McCarthy, &

Zald, 1988). According to a review by Baron and Hannan (1994), until the synthesizing essay

by McCarthy and Zald (1977), the contributions to resource mobilization had been rather

scattered and transient, competing for attention with studies that emphasized grievances,

frustration, beliefs and collectivity of individual actors (see also McCarthy and Zald, 1973).

The elegant solution for explaining collective action proposed by McCarthy and Zald (1977)

was to look beyond theories and empirical work on the social psychology of grievance. In

their project, the motives individual contributors might or might not have for contributing to

the public good succumb to the relative importance of the means by which collective action is

organized (McCarthy and Zald, 1977; see Oliver, 1993 for an extensive review). In the

instrumentalist view of collective action and the resource mobilization framework of analysis,

the creation and deployment of selective incentives for contributors to allocate sufficient

resources is essential to the success of collective action projects (e.g. Friedman and McAdam,

1992; Oliver, 1980)v. However, selective incentives, as Mancur Olson (1965) postulated

- 7 -

them, cannot explain collective action, since selective incentives represent a public good as

well and somebody needs to pay for them in the public’s interest (Oliver, 1980; 1993).

Open source software development can be characterized as routine collective action,

as it is non-violent and not aimed at challenging established order or overturning normative

control in society. However, open source software development deviates from collective

action usually analyzed in the resource mobilization theory in four ways, which shed new

light on the role of selective incentives. First, knowledge is both a resource for the project and

its goal, second, the development process represents the central activity over a long period of

time, third, goal directed recruiting is largely absent, and finally, no measures are taken to

prevent free-riding on the public good. First, McCarthy and Zald’s (1977) concept of the

resources to be aggregated by social movement organizations covers money and labor (p.

1216), as well as time (p. 1227). In their reasoning, social movement industries thrive under

conditions of resource abundance in society, provided that the general level of disposable

income raises, as does the shift in control over work schedules from upper echelons of

managers to lower level employees in firms. In their work, they put no additional constraint

on the type of resources the organization need in order to survive (p. 1226). In order to

meaningfully conduct an analysis of the Open Source software phenomenon, an additional

resource must be added to this framework: knowledge. It is a well-known fact among writers

in the resource mobilization tradition that social movements create knowledge as a by-product

of its activities, and thereby generate considerable value for society (e.g. Eyerman and

Jamison, 1991; Flora and Flora, 1993; Herman, Wolfson, & Forster, 1993; Indyk and Rier,

1993; Myers, 1994)
vi

. However, resource mobilization theory thus far did not consider

collective action that has the production of knowledge as the primary organization goal,

which is the case for an open source software project (software code) (see von Hippel and von

Krogh, 2003). For example, a project that develops software for extreme protection of privacy

when sharing information over the Internet needs programmers who can bring in specialized

knowledge in cryptography. This knowledge is probably a rare resource held by only few

firms, research institutions, universities, or individuals. Therefore, an additional constraint is

introduced in the analysis of open source software projects. Not only do these compete for

time, money, or labor in the social movement industry and sector, provided they have the

production of knowledge and innovation as their ultimate goal, but also they engage in intense

competition for the best knowledge and the most talented. De facto, many contributors to

Open Source software projects have regular jobs at commercial software firms (Gosh, Glogg,

- 8 -

Krieger, & Robles, 2002), and they either spend part of their work or leisure time on

developing code for these projects. Moreover, if knowledge is a resource on which projects

compete, not all contributions are likely to further the project’s goal of innovatingvii. As a

consequence, the development process assumes central importance within collective action.

Certain projects (movements), such as Linux, can exist for ten years and more without the full

functionality of the software being reached. When the goal of the collective action is the

production of knowledge, the way to reach this goal is part of the goal, and the role and

character of selective incentives may change.

In the resource mobilization theory individuals are seen as rational actors who engage

in instrumental actions and who use organizations to secure resources and foster mobilization

(McCarthy and Zald, 1977). The resource mobilization literature has placed a great deal of

emphasis on the importance of incentives for joining a movement, cost reduction mechanisms

for making contributions, and career benefits of such behavior (McCarthy and Zald, 1977; and

their emphasis on Oberschall, 1973). Recruiting and properly motivating participants in a

successful collective action project, in order to increase the attractiveness of contributing,

assumes central importance. With respect to successfully recruiting contributors to a

collective action task, especially where information about the movement is scarcely

distributed among potential participants, many writers predict that both the specification of

project goals and the nature of recruiting efforts should matter a great deal (Benford, 1993;

McPhail and Miller, 1973; Snow and Benford, 1992; Snow, Zurcher, & Ekland-Olson, 1980).

Thus, direct and stable social relationships between recruiters and potential participants are

important, so that recruiters will have more information about individual motivations and thus

be more effective in defining a rewarding goal (Oliver and Marwell, 1988; Taylor and

Singleton, 1993)viii.

Because open source projects need knowledgeable developers one would expect that

they would engage in precise goals formulation and active recruiting. However, successful

Open Source software projects do not appear to follow any of the guidelines for successful

collective action projects just described. With respect to project recruitment, goal statements

provided by successful Open Source software projects vary from technical and narrow to

ideological and broad – and from precise to vague and emergent (for examples see goal

statements posted by projects hosted on Sourceforge.net)
ix

. Further, such projects typically

engage in no active recruiting beyond simply posting their intended goals and access address

- 9 -

on a general public website customarily used for this purpose (for examples, see the website

named “Freshmeat.net”). However, potential participants can access information about the

project by performing a search on the Internet by such tools as Google. Beyond

communication over the Internet, people rarely meet face-to-face. Some people participate in

Open Source software development projects under pseudonyms concealing their real identity,

thereby obscuring their interests to the entrepreneur (see Sections 5 and 6). Even under these

seemingly adverse conditions, projects such as Linux or Apache have shown that they can be

successful in attracting large groups – perhaps thousands - of contributors.

Finally it is interesting to note, open source software projects seem to expend no

directed effort to encourage one to contribute rather than be a free rider. Anyone is free to

download code or to seek help from project websites, and no apparent form of moral pressure

is applied to make a compensating contribution (Lakhani and von Hippel, 2003). Deviating

from existing theory, what can explain this type of collective action? A lead can be found in

John Elster's (1986) work. He observed that the instrumentalist ideas of collective action

embedded in such theories as resource mobilization did not put enough emphasis on the

rewards ensuing from process related aspects of collective action. Elster remarks (1986: 132) :

"..cooperation reflects a transformation of individual psychology so as to include the

feeling of solidarity, altruism, fairness, and the like. Collective action ceases to

become a prisoner’s dilemma because members cease to regard participation as

costly: It becomes a benefit in itself, over and above the public good it is intended to

produce”.

Recent developments in economic theory support Elster’s conjecture. Thus, Rabin

(1993) and Fehr and Schmidt (2000) have shown that a game, which in material payoffs

constitutes a Prisoner’s Dilemma, can be transformed into a coordination game in which

cooperation is also an equilibrium outcome if pecuniary motivations and social motivations

are taken into account. Beyond theoretical and laboratory-based work, Elster's conjecture did

not receive much attention in field studies of resource mobilization. However, his work has

important ramifications for empirical studies: individuals are expected to join collective action

for rewards, other than that promised by the movement's end goal. In other words, there

should be private rewards apart from and before the end goal to those that contribute to Open

Source software projects, which should be considerably stronger than those available to free

riders
x
. This implies that the development process may be as important as the (envisioned)

- 10 -

final product, which cannot be supplied at once (e.g. GNU/Linux has evolved over a period of

12 years!). Programmers are rewarded for their contributions, and do not appear to wait.

In line with Elster’s conjecture, we propose that the production process of knowledge

in an open source software project has as a byproduct communal resources that reward its

contributors. The empirical phenomenon of Open Source software development represents a

form of collective action where the second order public good (Olson’s selective incentives, or

the communal resources in our case) emerges from the production process of the original

public good (here: software). In this constellation the “collective action dilemma” that Pamela

Oliver (Oliver, 1993: 274) ascribed to Olson's work disappears. The characteristics of and the

accessibility to the communal resources are the sufficient conditions in our reformulation of

Lerner and Tirole’s research question. Based on our proposition, we shall empirically explore

these communal resources in the case of Freenet (Section 6), but first we turn to the research

method (Section 4) and then introduce the case (Section 5).

4. Design and method

The purpose of our exploratory case study design (Yin, 1994: 30)(Yin, 1994:30) is to

investigate communal resources built during the development process, rewarding contributors

to an open source software project. The case study allows us to explore our proposition

(Hartley, 1995; McPhee, 1995) on the sufficient conditions for routine collective action to

happen in the novel setting of open source software development. The research had three

phases: sampling of the case, data gathering and building a case study data base, and data

analysis. We draw on both qualitative and quantitative data as both complement the insights

into the functioning of the Freenet project (Silverman, 1993).

The case was sampled for three reasons. First, in contrast to Linux, Freenet was

launched not on the basis of workable code the entrepreneur had written and revealed (Lerner

and Tirole, 2000), but rather on a master thesis in computer science published on the Internet

by its founder Ian Clarke, outlining the theoretical principles of anonymous peer-to-peer

computing (Clarke, 1999). This gives weight to an ambitious goal of creating new knowledge

rather than improving already existing software. As will be seen, the development of Freenet

hinges on knowledge of cryptography, which is considered a rare resource among experts on

software development. Second, Freenet has no template of software architecture available,

such as Unix for Linux (Wayner, 2000), making Freenet a radical innovation of peer-to-peer

- 11 -

softwarexi (Boehm, 2000; Oram, 2000). In effect, there is no example of modularization (easy

identifiable clusters of files and functions) of the software available. Hence, we reasoned that

those involved in the project would not have an easy understanding and access to the

technology. In contrast to projects emulating existing applications. Freenet contributors do not

know in advance what to expect of their final product. Therefore, the cost of contributing

should be considerably higher than for projects where templates and architectures are

available (see Waterson, Clegg, & Axtell, 1997). Third, Freenet is young in comparison to

Linux for example, which has been in operation since 1991. This gives Freenet a ”liability of

newness": The project must compete for knowledgeable developers with other established

projects that have routines available for resource mobilization. This might decrease the

likelihood of the project's survival compared to that of existing projects (McCarthy and Zald,

1977). Our data covers the calendar year of 2000. This first year was particularly important

for collective action because it involved the mobilization of 26 developers to a total of 30.

Given a fairly stable group of developers, we reasoned that 2001-2003 did not provide much

additional insight into the sufficient conditions for mobilization of developers. These first

three characteristics make Freenet in its first year of existence, a critical pilot case with

respect to studying our proposition (Glaser and Strauss, 1967; Stake, 1995; Strauss and

Corbin, 1990; Yin, 1994).

We gathered data from four different sources. First we conducted thirteen telephone

interviews in three rounds with Freenet core developers identified from the developer list on

the project’s homepage. Each interview took between one and two hours and was recorded

and transcribed to facilitate easy data analysis. The rounds occurred between October, 2000 to

January, 2001 and March to May, 2001. All interviews were semi-structured with guidelines

including developer background information, overall structure of the project, reason for

joining and working on the project, rewards, specialization, and particular challenges in the

project. In May 2003 we emailed an electronic questionnaire to participants in the project in

order to obtain further insights on communal resources.

Second, we collected the contributors’ public email conversations stored in the

projects’ mailing lists, which are archived on the publicly available website Geocrawler
xii

.

Since we focused on the contribution to technical development of Freenet, we gathered e-mail

data from the ‘development’ list where contributors discuss themes pertaining to the next

release of Freenet on the Internet, its design, emerging architecture, and other technical

- 12 -

aspects. A challenge in case studies is organizing large amount of data for effective analysis

(Yin, 1994). We created a case study database organized on month-by-month basis, of

messages including contributor identity, date and time for posting a message, mails

responding to the message, and mail content for the period January 1 – December 26, 2000.

The database included approximately 12,000 single email messages from 356 unique

participants (von Hippel, von Krogh, Lakhani, & Spaeth, 2002). However, no attempt was

made to extend the analysis to measure the number of lurkers on this list
xiii

.

The third source of data included committed source code within the CVS (‘Concurrent

Versions System’). CVS is a public ‘version control’ tool, designed to synchronize work and

keep track of changes in the source code performed by developers working on the same file.

CVS stores its version-control information in a directory hierarchy on a central server, called

‘the Repository’, separate from the user’s working directory. The repository allows

developers to add or remove files easily, or to ask for information about a set of files. The

CVS also stores the developer’s comments that document their work. While the source code

and comments are publicly revealed, in Freenet only a restricted number of about 30 core

developers can commit source code to CVS. In the case study, source code commits served as

a major pool of data because progress of the project is reflected by the progress of source code

modifications. The data we retrieved from the period January 1 – December 26, 2000

included 1244 source code commits from the 30 developers. This comprised in total 54.000

lines of software code added, excluding the initial revisions of code.

Fourth, we collected and analyzed publicly available documents related to Open

Source in general and to the project in particular, including the Freenet project web pages

(e.g. the Frequently Asked Questions (FAQ)
xiv

), Ian Clarke’s master thesis (1999), newspaper

articles on peer-to-peer software and interviews with the core developers
xv

, a working paper

describing the Freenet technology (Clarke, Sandberg, Wiley, & Hong, 2000), and a

presentation on results of a simulation of the software (Hong, 2001). Where there may have

been doubt, ambiguity, or lack of data, clarification with individuals in the project was

obtained via e-mail.

In the sections that follow, we describe Freenet (Section 5), and the results of our data

analysis (Section 6).

- 13 -

5. Freenet

Freenet is a peer-to-peer network designed to allow the distribution of information over the

Internet in an efficient and anonymous manner. Ian Clarke started the Freenet project when he

was a fourth year computer science student at the University of Edinburgh, and completed the

basic design in 1999. The overall goals of Freenet as defined by Ian Clarke are

(freenet.sourceforge.net, 2000):

• The network should have no centralized control or administration

• It should be virtually impossible to forcibly remove a piece of information from the

network

• Both authors and readers of information should remain anonymous if they wish to do so

• Information will be distributed throughout the network in such a way that it is difficult

to determine where the information is being stored

• Availability of information should increase in proportion to the demand for that

information thus preventing the Slashdot effectxvi

• Information moves from parts of the Internet where it is in low demand to areas where

demand is greater

These first basic ideas and design were outlined in his master thesis entitled “A distributed

decentralized information storage and retrieval system”, which was published on the web for

people to comment on, in particular on how to turn these ideas and design into a workable

software. The original document received limited attention, and Ian sent an email to the

subscribers on the mailing list around Christmas 1999 announcing that he planned to step

down as project leader due to personal reasons. Nobody volunteered to take over his position,

but a number of people on the mailing list came to realize that there was a minimal amount of

programming going on at the time. This spurred a revitalization of efforts, and in early 2000

several people made an active contribution to Freenet.

The first release of Freenet on the Internet happened in April 2000. Nine releases of

Freenet were made in 2000 and eight releases in 2001. Since then, the Freenet software has

been downloaded more than 1.400.000 times from the Internet. This shows the significant

- 14 -

public interest in this software, which also possibly triggered the interest of many potential

new developers to the project.

Collective action in Freenet includes the discussions on the development mailing list

that accompanies the production of the software code. Figure 1 shows the overall community

size over the year and the number of people joining and leaving the list. The date people join

the list is derived from the date of the first mail a person sent to the development list, while

leaving dates are derived from the last mail sent to the list.

Project Size, Joins and Leaves

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Weeks (2000)

N
u

m
b

er
 o

f
P

ar
ti

ci
p

an
ts

Project Size

Cumulative Joins

Cumulative Leaves

(Vertical lines indicate weeks in which a release occurred)

Figure 1: Project size based on e-mail activity (based on von Hippel et al., 2002)

On average the Freenet project consisted of 45 (sd:21) active participants per week.

This number was achieved around the first public release date of the project and after that

remained fairly stable. In 2000, 356 individuals participated in the main Freenet developer

discussion list. They generated 11,210 e-mail messages over 1,714 message threads. A

message thread is given by responses to an initial e-mail, covering a specific issue.

- 15 -

-200

0

200

400

600

800

1000

1200

1400

1600

1 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

week

M
o

d
if

ie
d

 L
O

C

0

200
0

400
0

600
0

800
0

1000
0

1200
0

1400
0

1600
0

1800
0

2000
0

accu
m

u
lated

 m
o

d
. L

O
C

dLO
CAcc. LOC

Figure 2, Added LOC and accumulated added LOC

Figure 2 visualizes the number of modified lines of code (LOC) in the source code repository.

The left scale shows the number of added lines of code in each week (negative values mean

more lines have been removed than added), the right scale displays the accumulated number

over time. It is to note, that this measure captures only changed LOC in already existing files.

The first revision of a file which is imported into the CVS system does not count as modified

and its LOC are not counted. Therefore the accumulated added LOC do not exactly

correspond to the total number of lines of code which exist in the source code repository.

When the first public release of Freenet (0.1 Beta) was made in week 15 (in 2000), this

resulted in a steep increase in source code changes, and sparked the interest and entry of

potential new developers into the project. Although Freenet was not started based on working

code, this shows that having working code in a project can indeed mobilize new developers as

suggested by the open source software expert Eric Raymond (see Raymond, 1999). In the

next section we proceed with an analysis of the case data regarding the rewards that ensue for

those who contribute this substantial amount of development work to Freenet.

- 16 -

6. Communal resources

Consistent with resource mobilization theory, it is only possible to mobilize hackers to

contribute to an Open Source project if the individual cost-benefit analysis reveals

outweighing benefits. We propose the characteristics of and access to three distinct rewards,

or communal resources. Communal resources do not exist prior to the collective action and

they are not used in a recruitment process or somehow targeted to the individual., Rather, they

are produced during the development process and are accessible under certain conditions to

self-allocating, individual programmers. The communal resources share along with Mancur

Olson’s concept of selective incentives (1965) the function of mobilizing individuals, where

both represent the benefit-side of the individual rationale for participating in a collective

action project. However, opposed to the selective incentives, communal resources are not

provided by a particular person or institution that carries the cost (Oliver, 1993). In our case

study this problem does not arise, since the communal resources emerge from the production

process of the Open Source software. A programmer in Freenet chooses, or aspires to a

particular level of involvement in the project. Involvement, in turn, is linked to the extent to

which the communal resource is accessible. In other words, the benefit that can be reaped

from access to the communal resource increases with involvement.

In a first round of analysis, we searched for themes in the interviews that would reveal

specific communal resources for the developers. We were looking broadly for statements

touching upon what people experienced as developers in Freenet and why they contributed to

the project. This form of analysis is very similar to what Barley called "systematization" of

topics emerging from his observations of radiology departments (Barley, 1990). We found

topics that could be grouped in three communal resources: reputation, control over technology

and learning opportunities. Reputation and control over technology in a collective

development effort cannot exist before the community does, and learning opportunities open

with the observation of work or the interaction of the programmers. All three communal

resources are features of the development process
xvii

. In subsequent iterations of analysis we

sought to make the three constructs operational.

Involvement

For the analysis of Freenet we operationalized involvement into three categories:

lurkers (the lowest level of involvement), contributors, and developers. Lurkers eavesdrop on

- 17 -

mailing or discussion lists without posting (Nonnecke and Preece, 2000). This group helps to

promote standards by using the software, to spread reputation, and represents a pool of

potential new developers, since nearly all developers started out by simply reading the

mailing lists and trying out the software (von Krogh, Spaeth, & Lakhani, 2003). As mentioned

in Section 4, we could collect no data on lurkers, although some interviewees revealed they

had lurked for an extended period of time before becoming developers.

The second group, the (regular) contributors, constitutes the largest visible group of

affiliates to the project. They either contribute code via a “gatekeeper” (developer), who has

CVS write access and evaluates the submission, or they participate in the discussions. The

breadth of involvement for contributors is large. At one extreme, a contributor may demand

an exorbitant feature (few might even value a contribution being a mere request), where at the

sophisticated end a contributor may be involved in technical discussions and regularly submit

useful patches.

Among the 30 developers we found several hackers who were particularly active:

Oskar Sandberg, Scott Miller and Brandon Wiley. Involvement is generally associated with

increased technical skills, merit and a sense of responsibility (Clarke, 2000). The developers

take on the vast majority of coding, plan the version releases, and decide on the inclusion of

features or any issues determining the overall direction of the development. Among them, the

founder of the project, Ian Clarke, has a right to veto suggested technical changes. Technically

speaking, the developers consist of all the participants with CVS write access. The CVS hosts

the most current version of the program and allows multiple programmers to simultaneously

change code. Thus, CVS write access is synonymous with a position to change the official

code version. Technically, anyone could download and recreate this system and build a

second competing version of Freenet, but in practice the authority of the official version is

rarely questioned (Wayner, 2000). Access is granted to a relatively small circle of skilled

programmers who have earned the trust of other developers through their contributions and

effort given to the project (von Krogh et al., 2003).

In the following, we will argue that the level of involvement influences the individual

access to the communal resources. Table 1 synthesizes the types of rewards corresponding to

the level of involvement and the communal resources.

- 18 -

Passive +
Quality
Feedback

ExtensiveHigh

Passive +
Feedback

LimitedLow

PassiveNoNo

Reputation
Control over
technology

Learning
opportunities

Lurker

Contributor

Developer

In
vl

ov
em

en
t

Communal resources

Table 1: Summary of the findings for involvement and communal resources

Reputation

Reputation is attributed to a person and develops over time. It reflects other observers’

judgment and does not imply a value statement. Reputation can be positive or negative and it

can improve or deteriorate. We limit our analysis of the data to the establishment of a good

reputation in Freenet. Of course, there exist reputation losses and various forms of sanctions

in Open Source communities that are not considered here (for more on this, see O'Mahony,

2003). Reputation can only exist vis-à-vis an audience. Since Open Source software

development projects consist of experts in computer programming, and the daily work on

coding and the technical discussions for a particular project hardly ever resonates outside the

project, it makes sense to distinguish the audience inside from the one outside the project.

Thus, reputation is created within an Open Source project and may under certain conditions,

spill over to a wider public on the outside. We distinguish the audiences outside and inside the

project and present reputation within the project as a communal resource by showing a

relationship to the level of involvement in the project.

Using a labor market argument, Lerner and Tirole (2000) and Lee et al. (2003) suggest

developers who build a strong reputation in the Open Source projects would enhance their

human capital, and so would raise their value to a future employer. An intriguing idea, the

interviews we conducted with the developers of Freenet did not confirm that they contributed

- 19 -

in order to raise their value in the labor market for software engineers. Such as a developer

who calls himself "Mr. Bad", even used fictitious identities in order to conceal their real

identities and often their affiliations with software firms. Rather, it seems the direct effect of

reputation among peer Open Source software developers was important to Freenet developers,

which is consistent with assertions in the literature (Himanen, 2001; Lerner and Tirole, 2000;

Raymond, 1999; Risan, 2001). As core-developer Scott Miller put it:

 “If I am writing a program why not release it as Open Source. It doesn’t cost me

anything and, you know, it might be good for my reputation, it might get me involved

in other things. And I think that’s how I got started programming in it.”

Or as Oskar Sandberg, also a developer, admitted:

“Yeah, in a way. I like to, I like to do something extra, I try to make my code nice or

make the other people I work with like it (laughs). And yeah, of course it’s always

good to hear nice things about your work and such things. It would be harder to work

if I wouldn’t get any further positive feedback, of course. (...)”

However, the global hacker community celebrates its own stars such as Eric Raymond,

Bruce Perens, Ian Clarke, and Linus Thorvalds. These are people who have made major

contributions in terms of software code, and hence based on their merits attained a strong

reputation. Even further away from the hacker culture, there exist examples of hackers who

attracted a wider public attention through media coverage such as books for the non-hacker

(e.g. Moody, 2001), a foremost example Linus Torvalds (Torvalds and Diamond, 2001). As

these examples are very rare, worldwide fame cannot be expected from an involvement in an

Open Source community. What can be expected are like-minded hackers and experts in their

fields of programming who scrutinize new code and evaluate its functioning, and

consequently the achievement of its author. Similar to written text, the criteria for evaluation

of software code seem unlimited and hinge on personal preferences ranging from viewing

code as a simple tool to a form of art (e.g. Knuth, 1969).

In a technical community that judges people on merits rather than personality, a

programmer’s reputation is mainly built over time through excellence in coding (Kohanski,

2000; Raymond, 1999). In Freenet, although code patches
xviii

 were sent to core-developers by

various contributors (prior to them receiving CVS access or as a singular contribution), the

core-developer had what we would call a "fingerprint" advantage. The code was committed to

- 20 -

the CVS identifying the developer who entered it into the CVS. This person was not

necessarily, although was most of the time, identical to the author. At this point the code was

open to scrutiny from the public. Our interviews revealed that the hackers typically found

code (of others and themselves) to be "elegant" if it could perform a complex or difficult task

yet required limited computer processing. If the code was small in terms of lines of code, but

still important for the functionality of the overall Freenet software (see Kohanski, 2000), the

core-developer had a unique possibility to build a reputation within the Freenet community

among the other project participants, and potentially also outside the Freenet project

environment. In Freenet, this type of reputation building was open only to the developers with

CVS writing access.

Another way to contribute was to participate in development discussions. The mailing

lists were public and anyone could read and comment. This form of contribution to the project

did not directly require coding skills, though for competent participation (incompetent

comments tend to be ignored), a certain level of technical expertise and sound knowledge of

the state of the project was indispensable. Useful comments included references to various

sources of information or new ideas on a problem discussed. As valuable as these

contributions may be, they were “only” written speech and not source code.

We measured reputation as the number of neutral references and explicit praise given

to a person within the community. A neutral reference to a person means the mention of the

person’s name in the mail discussion. The vast majority of references involved neutral or

positive assessment of the person’s work. We counted all references to core-developers in the

developer mailing list of Freenet for the year 2000, except those with frequent names (where

potential confusion compromised the quality of the analysis) and excluded four outliers (Ian

Clarke, Oskar Sandberg, Brandon Wiley and Scott Miller) who each wrote on average three

times more mails than the next frequent discussant. The 19 core-developers were referenced

on average 93.9 times, with the median being 80 and the standard deviation a high 87.5. A

randomly chosen sample of equal size out of the 356 contributors without CVS access

revealed an average of 3.4 references with the median being 0 and the standard deviation 8.3.

These differences in references reflect the number of mails sent to the list and hence reflect

how well known core-developers were compared to regular contributors. On average, a core-

developer sent 132 mails to the mailing list, whereas the average from our contributor sample

was 11.2. In the analysis on explicit statements of praise, only 1 out of 20 lauds were

- 21 -

addressed to a regular contributor, whereas the other 19 were directed to core-developers. For

example, in August 2000 Oskar Sandberg wrote:

“There are two separate projects to write Freenet nodes in C and C++. One is getting

along only because of Adam’s noble and excellent work, …”

Or on a more humorous note a contributor by the name of Flute Gardener wrote in

October 2000:

“Oskar [Sandberg] is better than god and eminem. Neither god nor eminem write

Freenet code! Although it would be kinda cool if great code would inexplicably

appear in the CVS.”

Clearly, reputation was only accessible for the developers, who were mentioned

regularly. The contributors were referenced far less frequently. Within the large group of

contributors the number of mails sent to the discussion list ranged from 1 to 128. A Wilcoxon-

Mann-Whitney rank sum test rejected with 99% confidence that the references of both

samples stem from an identical distribution. Lurkers cannot have a reputation, for they never

appeared publicly. Reputation is not automatic and can also be understood as a reputation

opportunity, in this context. This analysis does not explain the causes of reputation, but the

association suggests that reputation increases for the same reasons as involvement increases.

Control over technology

The second communal resource we identified was control over technology. Developers

are able to control what and how the software is going to work, the compatibility or lack of

compatibility with other software, and to a certain extent who were able to use the software

through various means. As mentioned only 30 developers could commit the code that

eventually comprises the software innovation. Furthermore, code developed by non-

developers was reviewed and a developer decided on its potential inclusion in the source code

repository. By submitting the source code themselves, the developers maintained a tight

control over the source code and therefore the Freenet technology in terms of functionality
xix

.

We found, for example, that some developers had strong ideological interests

associated with Freenet, particular regarding anonymity. An important technical discussion

continued among developers and contributors for weeks regarding the search for files in

- 22 -

Freenet. A file search function that would made the location of information easier for Freenet

users, could at the same compromise anonymity of the sender and receiver of information and

was deemed against the Freenet design goals (see Section 5) by the developers. While this

discussion generated considerable discussion volume, the developers decided not to include

any software files that would compromise the anonymity of the users. In this sense, a

privileged access to the control of technology allowed developers better opportunities to

realize their interests than non-developers in the project.

If anybody could impact on the technology developed, it seems likely that the utility

people derive from belonging to the developer group would diminish rapidly. Consider that a

malevolent developer would intentionally commit code to the CVS that cause the software to

malfunction. If this were the case, the returns on the developers’ personal investment in

coordination, code writing, discussion, code reviewing, debugging and so forth would

diminish rapidly. Hence, control over technology afforded to developers whose work one

judges as valuable, secures all developers’ future rewards associated with the development of

the technology. Of course, this communal resource would not hinder an existing developer in

committing code that would break down the technology. However, in Freenet, for a

contributor to become a developer with CVS access required on average 23.4 messages before

he was given access. These messages contained highly technical content such as suggestions

to fix a bug in the software, a code patch, or a software-related commentary or review. This

relatively lengthy and costly process of joining the project made it easier for the existing

developers to identify a capable new developer, and any adverse action, once privileged

access had been given, would have caused a negative reputation beyond the project within the

hacker community at large (Raymond, 1999).

Being able to control what functionality was worked on in order to satisfy one’s own

personal needs proved to be a communal resource in order to mobilize contributions to the

Freenet project. This interview quote from a developer illustrates this point:

“My main interest, at the time, was getting my magazine published on Freenet. There

weren’t really tools for doing a full Web site, and I spent some time working on

making a tool for that, working on fixing the client interfaces, and in some marginal

areas of the [core parts], to make it work, so my magazine could get published.” (Mr.

Bad)

- 23 -

The quote also shows that developers controlled what was being worked on in the

technology due to the self-appointment of tasks. This seems typical for open source projects

(Schoonhoven, 2003), for as we argued in Section 2, unlike in a software firm, contributors

and developers in such projects cannot be assigned to certain tasks which they are not willing

to implement. In this way, they inherently have a degree of influence over what parts of the

software are expanded and improved.

Another dimension of control over technology is agenda setting. Cohen, March, and

Olson (1972) argue that participants in an organization are only able to make a restricted

number of choices within a certain time frame. Therefore, “attention patterns” within the

project matter, implicitly deciding on what choices are discussed and made. In Freenet, a

proxy for agenda setting is thread initiation
xx

. By starting a new series of e-mails with a

certain topic, a developer or contributor was able define the topic to be discussed within the

project. In-depth analysis of single threads revealed that some tended to change the topic

during their existence, and the number of threads might not exactly represent the number of

topics discussed. However, it is still an acceptable indicator on “what went on” in the project.

We found that each developer started 34,9 (standard deviation: 64.65) threads, whereas each

of the contributors only began 4.81 (standard deviation: 3.92) threads on average. Developers

were more active in setting the agenda within the project, therefore shaping the attention

patterns Cohen, March, and Olsen (1972) discussed. Developers were also able to add new

and modify existing items on the ToDo list, a text file describing potential next steps that are

considered a priority by the project. Newcomer contributors often used this list to get a sense

of what was important in the project, and therefore it shaped the general direction of the

software development.

As the developers decided on the ways in which the software was released during the

various stages of development, they could control how the software was used and by whom.

Analyzing the threads in emails, two issues we found to be important by their recurring

mentions were the release frequency and the release date. A higher release frequency (see Fig.

1 and 2) normally allows the public to test recent source code additions and the developers

can thereby get faster feedback on ease of use, functionality, and problems to run the software

on various computer platforms (Raymond, 1998). However, each release will be less tested

and therefore probably running less stable, as opposed to having fewer but more thoroughly

tested releases. Freenet solved this problem by infrequently releasing stable versions

- 24 -

complemented by daily snapshots (a snapshot refers to an automatically packaged software

release, derived from the current state of CVS code).

The importance of release scheduling in the Freenet community is illustrated by the

following quote by a contributor:

“I know that Ian is going to start pushing for a release schedule again now, and I’m

beginning to fear that if we don’t indulge him soon he will suffer spontaneous human

combustion. Certainly, most of the big issues have been weeded out now, and I too am

somewhat interested in seeing what happens when people actually use Freenet.”

The release dates were also important as they determined which features were

included in the next version of Freenet as the following e-mail quote shows:

“What do people think - release now or wait for persistent connections?” (Ian Clarke)

The third aspect of release management was the packaging and distribution methods

being used for the software. Networking software like Freenet, whose proper functioning

depends on network externalities, requires a broad user base in order to work reliably (see

Section 4). Therefore, making prepackaged software distributions available, which could

easily be installed by regular users, was crucial to the success of the project. A comment by a

contributor expressed the need for this:

“As a Windows user my only beg is that there is a easy way (sic!) for the jabronis to

install it that is as simple as gnutella or shoutcast. The more folks banging away at

this the better.”

Responding to such calls, some developers spent considerable efforts on building

software modules that could provide easy installation on various computer platforms, thereby

enhancing functionality as well as the general distribution of Freenet in line with its

objectives. In fact, an analysis of the technical characteristics of the software revealed that

most of the new developers that joined the project in 2000 made their first commit of software

to the CVS around this functionality (von Krogh et al., 2003). By controlling release

frequency, release dates, and packaging and distribution mechanisms, developers were able to

control to a certain extent who could use the software with what level of stability when

running the software on their computers.

- 25 -

In sum, we conclude that developers and, to a certain extent, active list contributors

(by their mail messages) through their increasing involvement were rewarded by the

communal resource "control over the technology" through the following: direct CVS write

access, self appointment of tasks, agenda setting on the discussion list, a ToDo list, and

release management

Learning opportunities

The third communal resource consists of learning opportunities, defined as

collectively accessible opportunities for learning that each individual faces. These

opportunities are represented by access to software source code, to experts in a very

specialized field, to technical discussions with peers, or to direct feedback to one’s own work.

The amount and the quality of the learning opportunities increase with the individual

involvement in the project.

The literature classifies learning (Bloom, 1956; Kratwohl, Bloom, & Masia, 1964),

evaluates learning (Biggs and Collis, 1982), and describes how learning may take place (see

Atherton, 2002 for a broad review; Lave and Wenger, 1991; Reynolds, 1965), but the concern

often lies with the individual's learning success. Our data does not tell us whether people

actually learned in Freenet. Rather, we found conditions and an environment associated with

learning at the level of the project without which the project would not have continued (to be

able to make a contribution to the emerging software, people first had to understand the

emerging software architecture). These conditions include a general flow and exchange of

information, feedback and review mechanisms, externalization of knowledge through code

and recombination, (Nonaka, 1994) and participation (Lave and Wenger, 1991) in the

development process. Etienne Wenger suggested that the emergence of boundaries of a group

could be an indicator of the possibilities for collective learning through feedback among its

participants (Wenger, 1998: 256):

The local depth these groups (Note authors’ augment) .. provide inevitably creates

boundaries, which are … also a sign of learning. But then boundaries themselves

become learning opportunities, and the richness of boundary processes becomes a

sign of learning as well.

- 26 -

In other words, active involvement in the group matters, implying that learning

opportunities for those who are included in the development process should be higher than for

those outside the boundary of the group, or the "peripheral participants". In the context of

Open Source these conditions function as a communal resource and we termed them learning

opportunities.

There exists a non-linear relationship between cumulated learning opportunities and

involvement which starts at very low levels of involvement (lurkers) and peaks at the global

maximum with the most highly involved developer in the project (in terms of committed lines

of code and number of sent emails). In reality, involvement represents a continuum: It is

conceptualized with interest in and commitment towards the project, and it was measured for

each actor by the interaction frequency (mails sent to mailing lists) and coding intensity (lines

of code written or code modifications to the CVS repository within a certain time). Lurkers

are publicly invisible, by definition, and represent the lowest level of involvement. "De-

lurking", the first public appearance in the Open Source project, represents a first distinction

to the second type of actor, the contributor. The second distinction is CVS write-access that

distinguishes the third group: developers. Our categories follow the idea of looking for

boundaries of group membership, and classify the actors around an Open Source project in

three somewhat arbitrary but practical levels of involvement. For each level of involvement

we highlight in this section the applicable learning opportunities.

Learning opportunities cumulate as involvement increases. An additional learning

opportunity can either be of a new type or of increased quality, such as more depth of

expertise in a conversation or a peer review of the mail message or the software code. The

quality of a learning opportunity does not refer to the learning taking place, but to the quality

of access to the source of knowledge in the project. A skilled programmer can learn more as a

lurker (passively reading through conversations and code) than an incompetent discussion

participant can. Nevertheless, the latter has an additional opportunity: interaction. We

distinguish two classes of learning opportunities: passive and interaction-based. Our analysis

of emails revealed this could be a natural and valid distinction for developers. Consider the

following excerpt from an email of a contributor:

I wanted to spit out a very quick introduction to everyone. I just joined the freenet-dev

list today, and I’m very eager to get involved in the project. I think the concept is

absolutely brilliant! I am a software developer with about three years of experience in

- 27 -

the commercial world writing Java..for my day to day living. My most recent project

lasted two years, and involved a distributed architecture based on RMI with

cryptography provided by Sun JCE…Hopefully, similar skills are needed somewhere

in the FreeNet project. I'll be happy to look through the code and help out where

needed, whether it's heads down coding, debugging, writing JavaDoc, or authoring

whitepapers. Whatever. Until then, I'll shut up and just absorb the culture a little bit

and get my bearings!

Here the contributor indicated his knowledge but also the need to passively learn more

about the specific tasks where his expertise in Java programming could be put to use. He

decided to step back and lurk until the appropriate task had been found. Our interviews with

developers revealed similar approaches. People would lurk and observe the project for a while

(up to two months) before they announced their presence on the developer list. However, the

learning opportunities intensified as they joined as contributors. As mentioned above, those

26 people we observed joining the project demonstrated considerably higher levels of

technical activity than the average contributor, before they were given access as developers to

the CVS. They would suggest technical features, bug fixes, and give gifts in the form of

software patches. They would receive feedback from other developers and contributors, and

change their work and ideas accordingly. Framed in Wenger’s (1998) concept of group

learning, the boundary of the developer group created its own learning opportunities for those

who joined the project at the level of CVS access.

Interaction, in turn, uses two media, human language (usually English) and computer

language (code). Hackers hardly ever meet face-to-face and thereby exclude all non-verbal

communication except for code (Section 2). One refers to the interaction in conversation and

the other to interaction via code. Conversations on mailing lists ranged from superficial to

very technical. The dominant medium was written (English) language in mailing lists, and

code was rarely copied into an email. The interaction relating to the software code took place

on the basis of computer code (and did not necessarily require human language, although

developers frequently used written statements alongside the code to help others understand

the meaning of it). Both types of interaction can be understood as feedback learning

opportunities. Interview data on this "peer-review process", as it is sometimes called, suggests

feedback was strong enough to even induce developers and contributors in part to evaluate

- 28 -

their competence (likely intense form of learning). Ian Clarke, the founder of the Freenet

project, said:

“There’s also this intensive continuous peer review process that means that if

somebody doesn’t have the appropriate skills or understanding, they will very quickly

be admonished for it. It’s this intensive instantaneous peer review that makes it much

easier for people to self-select.”

Lurkers are by definition invisible to the public eye. If measured solely by their

interaction their involvement would be zero, but as opposed to anyone not interested in the

project, lurkers do get passively involved. They may access all publicly available data

including the code base and the discussion lists, current and past. These passive learning

opportunities include vast sources of information and codified knowledge. They are never

personalized, however, since the lurker does not ask questions.

The range of possible interactions for contributors was large and consequently the

learning opportunities differed. A simple one-time comment in the discussion may have

resonated very little to not at all. A frequent discussant and skilled programmer without CVS

write access (still contributor and not developer in our classification) enjoyed considerably

more and better learning opportunities than the one-time contributor. Hence, involvement

varied greatly among contributors. All contributors faced the passive learning opportunities of

the lurkers, and in addition, the two types of feedback learning opportunities. First,

statistically a discussant could expect a reaction on a mailing list posting, as we will see

below. Not surprisingly, the reactions differed in quality depending on the nature of the

discussion and the nature of the question. Consequently, the quality of the learning

opportunity varied from low, associated with superficial discussions, to very high, where the

discussion was technical and the discussants displayed extraordinary expertise. Thus, the

more involved a contributor got into the depths of technical discussions, the higher was the

quality (and expertise) of the reactions on his question or input.

Second, code–based interaction offered another feedback learning opportunity. Many

contributors join an Open Source project by fixing bugs or offering software patches as gifts

to the project (Bergquist and Ljungberg, 2001; von Krogh et al., 2003). In Freenet, these

patches were without exception reviewed by a developer with the authority to add them to the

code base of the project (the CVS), and the possible review results offered numerous learning

- 29 -

opportunities for the author. The code was accepted or rejected. If accepted it was sometimes

modified by the developer who applied the patch. Both options involved a form of direct

feedback for the author’s work. The new code may have spurred coding in other modules of

the software when adaptation to the new feature was necessary. Remember that Freenet,

during the period we researched, grew to 54.000 lines of software code. By learning about

how the submitted (accepted) patch triggered development work across the whole software

architecture, in other features and modules, the author could gain a better understanding of the

overall code. This e-mail interview quote by a developer illustrates how a new patch may

trigger discussions among other community members:

“Direct feedback usually comes in form of defect reports (closing of existing ones or

opening of new ones!) as well as subsequent discussion on mailing lists, particularly if

the patch needs more explanation (the resulting explanations then benefit all

developers and readers of the mailing lists).”

Again, the quality of these learning opportunities differed mostly due to the nature of

the new code. The larger the impact of the new code on the existing software, the wider was

the attention it drew from the contributors and developers. This became clear, for example, in

the discussion mentioned above regarding search modules in the software, which developers

and some contributors believed compromise anonymity and hence ran counter to the Freenet

design goals.

The relatively small group of 30 developers were the most assiduous coders, the most

frequent discussants and in general the people who ran the project. Participation in the

development list was highly concentrated with four individuals, or 1.1% of the population

accounting for 50% of the e-mail traffic. All of these four individuals were developers with

the status of committing code to the CVS. The GINI coefficient for message authorship was

0.89 confirming this concentration of activity. In addition to the learning opportunities the

contributors have access to, the developers enjoyed the largest share of attention by the other

developers and participants and their work was reviewed most frequently. Assuming, like

many observers of software development work (e.g. Kohanski, 2000; Pavlicek, 2000) that

every line of code written represents a potential software bug and that it needs review and

testing, it is obvious that the most important authors of code receive the most reviews of their

work from which to learn. On average there were 24 (standard deviation:18) commits per

week to the CVS code repository. All 30 developers (8.4% of the total community) added

- 30 -

code to the project. There was a high degree of concentration in the code-writing task with 4

developers (13%) committing 53% of the code to the CVS repository. The GINI coefficient

for the code commits was a 0.77 indicating a high degree of concentration in the code commit

task.

A similar pattern appeared in the mailing list conversations. Message threads signified

that authors of an email brought an important theme of software design to the attention of the

project and that this theme sparked further discussion, each new email making a reference to

the original e-mail. Thread initiation was similarly concentrated with 10 individuals, 2.8% of

the population, accounting for 50% of messages threads initiated. Again, all of these were

core-developers in the project. The GINI coefficient for thread initiation by participants was

0.80. A high 78% of the population attempted to initiate dialog at least once on the developer

list. Of these attempts only 29 (10.5%) participants did not receive any reply to their initial

posting and subsequently did not appear on the developer list again. Choosing a particular

topic was a way for developers to lead set the agenda, and efficiently access knowledge of

developers and contributors. Developers not only received a lot of individual feedback, they

could, due to their central position in the project, even access the majority opinion and get a

feel for what the “collective feedback” was (e.g. interview quote by Ian Clarke above

regarding release date). Amongst each other, developers sometimes worked in small, and

highly specialized teams on a particular problem or module (von Krogh et al., 2003). This

intense exchange with other developers offered another high-quality feedback learning

opportunity.

A variety of learning opportunities are available to Open Source software development

project participants at different levels of involvement. Together they constitute a communal

resource which is produced in the software development process, and which is open to those

who engage in an Open Source project. There are passive and feedback learning opportunities

that in turn vary in quality. An expert replying to a technical question represents a higher-

quality learning opportunity than an unqualified comment. The key insight into this

communal resource, however, is the positive relationship between involvement and learning

opportunities, where only interaction can generate direct feedback from a large number of

contributors (in Freenet's case, more than 356 individual contributors and developers , see

Section 5). The quality of feedback usually reflects the level of expertise and skill of the

programmer regarding the project. And this expertise is closely linked with involvement.

- 31 -

7. Conclusion and implications

Based on resource mobilization theory, we investigated conditions that are sufficient

to mobilize programmers to contribute freely to the provision of open source software. An

exploratory case study of Freenet, a project developing a sophisticated software for peer-to-

peer file sharing over the Internet, showed that the production process of knowledge in an

open source software project has as a byproduct communal resources that reward its

contributors. In Freenet, the communal resources were reputation, control over technology,

and learning opportunities. Whereas these communal resources exist and are perceived as

such, we cannot claim them to be exhaustive. We observe them in parallel making it

impossible to judge whether each of the communal resources is necessary for the collective

action to materialize. However, our study has general implications for resource mobilization

theory, research on open source software development and technological innovation.

Resource mobilization theory

There are two distinct contributions to resource mobilization theory. First, in our

reformulation of Lerner and Tirole’s question (What are the sufficient conditions that

mobilize programmers to contribute freely to the provision of a public good?) we employ a

resource mobilization framework and find the characteristics of, and the accessibility to three

communal resources. Open source software development mobilizes through communal

resources the knowledge, time and effort of individual programmers to produce new and

innovative software. The organization is emergent and the individuals, different from

employees of firms, self-allocate to the tasks they prefer. Rational individuals can be

mobilized if they envision certain rewards associated with their costly engagement. In the

Freenet project the access to communal resources increased with involvement in the

development process. Involvement means dedicating one’s own skills and expertise to the

project and reflects the effort in software development. Therefore, the communal resources

explain the emergence of collective action among rational actors, in spite of active and

widespread free riding. Open source software represents a public good since the software is

publicly available and as a knowledge good inexhaustible. The communal resources emerge

during the production process of this public good as a by-product from the interaction of

project contributors and developers, who discuss problems and collectively drive the

development process. But the rewards the communal resources provide, are individual. Based

on our analysis, we provide an empirical grounding of John Elster's (1986) conjecture on

- 32 -

process-related rewards. Collectively accessible but individually rewarding, communal

resources are also a public good for those with the interest and skills to use them. Therefore,

they correspond to Mancur Olson’s selective incentives. In this combination, the communal

resources solve the second order public good problem discussed by Oliver (1993), and

therefore open source software development establishes a theoretical typology of collective

action (see Oliver, 1993: 293).

This leads us to the second contribution. Resource mobilization theory has been

applied to social movements where contributions have neither been distinguished nor selected

by the movement. However, because knowledge is both a resource and a goal of the project,

open source software represents a theoretical type of collective action where both the value of

the public good and the character of its development process require careful selection of

available resources. We used the case study of Freenet to explore sufficient conditions for

collective action to happen in the setting of open source software development (McPhee,

1995). As mentioned, Freenet did not expend resources on recruiting contributors.

Nevertheless, in the year we studied, their number grew to 356 people. Among these

individuals, skilled programmers stepped forth and the existing developers observed their

knowledge, interest, and commitment to the project, before admitting them as developers. In

this sense, open source software projects produce a public good in an inverted form of

collective action, through social sampling rather than mass mobilization.

Further research could elaborate a formal model of collective action in open source,

and apply it to other situations. For example, academic knowledge creation has a number of

parallels to open source software development, where communal resources such as reputation,

may be observed in academia as well (see also Stephan, 1996). A broader approach towards

communal resources may generate categories of possible communal resources. What other

determinants of individual rewards from communal resources exist? How exactly do

communal resources emerge and how do they disintegrate or disappear? Can aspects of this

typology of collective action be relevant for voluntary action within a firm, whose product is

knowledge?

If communal resources explain collective action of the type found here, we may also

employ the concept to the analysis of competition in the social movement industries called for

by McCarthy and Zald (1977). Comparative case studies of open source projects could

identify perceptions of communal resources held by participants across projects. Faster access

- 33 -

to, or higher quality communal resources might induce programmers with scarce knowledge

to join specific projects (or social movement). Communal resource may therefore influence

the competitive position of social movements. This, in turn, raises questions regarding group

composition as a specific problem of resource mobilization. In other words, in a competitive

environment, how can a project attract the necessary knowledge to survive?

Research on open source software development and technological innovation

At this stage, in order to advance research on the new phenomenon of open source

software development exploratory case studies are needed. Their purpose is foremost to gain

familiarity with the new, unfamiliar data and establish measures to be used for large-sample

research. Previous studies have established measures of group activity in open source projects

(Koch and Schneider, 2000), psychological measures for individual developer motivations

(Hertel, Niedner, & Herrmann, 2003), specialization of developers and their level and type of

activity (von Krogh et al., 2003), and users’ satisfaction with the software product (Franke and

von Hippel, 2003). Our research established measures of value to future research on open

source software development by operationalizing the constructs of reputation, control over

technology, and learning opportunities. Although care was exercised to make the categories

non-disjunctive and the constructs operational, measures, items and the external validity of

our proposition must be verified across a wider sample of cases.

While a new phenomenon calls for extensive empirical work this paper has also

demonstrated that empirical studies need to be guided by theoretical frameworks. Because of

our initial research question, we chose resource mobilization theory to guide the inquiry into

Freenet. This and other frameworks will serve the purpose of gaining a comprehensive

understanding of the causes of collective action, the nature of the open source software project

and product. For example, we found that some developers had strong ideological views on the

purpose of Freenet. Frameworks other than resource mobilization theory are useful to

understand if, and how, passion, grievances, and ideology drive mobilization in open source

software development. Theories that explain collective action not in terms of interest and

cost/benefit analysis, but in terms of changes in social identities associated with radical social

or technological change, are more helpful here (Melucci, 1999; Rowley and Moldoveanu,

2003)xxi. Possible research questions include: What is the importance of the hackers’

orientation towards commercial software development and products for their mobilization?

What are the values and ideals underlying conversations among developers? How do values

- 34 -

and norms emerge in an open source software project? What is the role of proselytizing and

charismatic leadership in establishing collective action?

Open source software development has produced innovative software on numerous

accounts. These software products exist as public goods, whereby the knowledge is available

to anyone interested. Hence, open source software development as innovative collective

action avoids the social loss problem of innovation seeded and secured by private investments

(von Hippel and von Krogh, 2003). From this point of view societies have incentives to foster

innovation by collective action as observed in open source alongside the private innovation

model by entrepreneurs and firms. Future research may show what knowledge and

technological innovations can emerge from this typology of collective action. The

consequences of a successful private-collective model of innovation could be far-reaching

with regards to intellectual property rights, innovation policy and the development of the

affected industries. Open source software development may represent an important indicator

of a post-industrial society where users develop knowledge and information-based products

for their own needs and freely share them with others. Since users’ rewards ensue from the

production of the public good, in addition to the public good itself, we certainly know it is an

interesting and perhaps new form of collective action.

References

Atherton, J. S. 2002. Learning and Teaching: What is Learning?
http://www.dmu.ac.uk/~jamesa/learning/whatlearn.htm (accessed: 4 Jan 2003).

Austin, R. D. 2001. The effects of time pressure on quality in software development: An
agency model. Information Systems Research, 12(2): 195-207.

Barley, S. R. 1990. Images of Imaging: Notes on Doing Longitudinal Field Work.
Organization Science, 1(3): 220-347.

Baron, J. N. & Hannan, M. T. 1994. The Impact of Economics on Contemporary Sociology.
Journal of Economic Literature, 32(3): 1111-1146.

Benford, R. D. 1993. You Could be the 100Th Monkey - Collective Action Frames and
Vocabularies of Motive Within the Nuclear Disarmament Movement. Sociological Quarterly,
34(2): 195-216.

Bergquist, M. & Ljungberg, J. 2001. The power of gifts: organizing social relationships in
open source communities. Information Systems Journal, 11(4): 305-320.

- 35 -

Biggs, J. & Collis, K. 1982. Evaluating the Quality of Learning: the SOLO taxonomy. New
York: Academic Press.

Bloom, B. S. 1956. Taxonomy of Educational Objectives, the classification of educational
goals – Handbook I: Cognitive Domain. New York: McKay.

Boehm, A. 2000. Nicht einmal ich koennte Freenet abschalten oder zensurieren.
SonntagsZeitung, 139. 10 Dec 2000.

Buechler, S. M. 1995. New Social-Movement Theories. Sociological Quarterly, 36(3): 441-
464.

Clarke, I. 1999. A Distributed Decentralised Information Storage and Retrieval System.
Master’s Thesis, Division of Informatics, University of Edinburgh.

Clarke,I. 2000. Interview with E. v. Hippel and K. Lakhani on 10/25.

Clarke,I., Sandberg,O., Wiley,B., and Hong,T.W. 2000. Freenet: A Distributed Anonymous

Storage and Retrieval System, Berkeley, CA. Designing Privacy Enhancing Technologies:
International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009. 25
Jul 2000.

Cohen, M. D., March, J. G., & Olson, J. P. 1972. A Garbage Can Model of Organizational
Choice. Administrative Science Quarterly, 17(1): 1-25.

Conner, K. R. & Prahalad, C. K. 1996. A resource-based theory of the firm: Knowledge
versus opportunism. Organization Science, 7(5): 477-501.

Cusumano, M. A. 1992. Shifting Economies - from Craft Production to Flexible Systems and
Software Factories. Research Policy, 21(5): 453-480.

Dalle, J. M. & Jullien, N. 2003. ’Libre’ software: turning fads into institutions? Research

Policy, 32(1): 1-11.

Dam, K. W. 1995. Some Economic-Considerations in the Intellectual Property Protection of
Software. Journal of Legal Studies, 24(2): 321-377.

Demsetz, H. 1967. Towards a theory of property rights. American Economic Review, 57(2):
347-359.

Elster, J. 1986. An Introduction to Karl Marx. Cambridge: Cambridge University Press.

Eyerman, R. & Jamison, A. 1991. Social Movements: A cognitive approach. University Park
PA: Penn State Press.

Fehr, E. & Schmidt, K. M. 2000. Fairness, incentives, and contractual choices. European

Economic Review, 44(4-6): 1057-1068.

Flora, C. B. & Flora, J. L. 1993. Entrepreneurial Social Infrastructure - A Necessary
Ingredient. Annals of the American Academy of Political and Social Science, 529: 48-58.

- 36 -

Franke, N. & von Hippel, E. 2003. Satisfying Heterogeneous User Needs via Innovation
Toolkits: The Case of Apache Security Software. Research Policy, 32(7).

freenet.sourceforge.net 2000. Freenet website. http://freenet.sourceforge.net.

Friedman, D. & McAdam, D. 1992. Collective identity and activism: Networks, Choices, and
the life of a social movement. In A. D. Morris & C. McClurg (Eds.), Frontiers in Social
Movement Theory: 156-173. New Haven: Yale University Press.

Glaser, B. & Strauss, A. 1967. The discovery of grounded theory: Strategies of qualitative
research. London: Wiedenfeld and Nicholson.

Gosh, R. A., Glogg, R., Krieger, B., & Robles, G. 2002. Free/Libre and Open Source
software: Survey and study (FLOSS), Part 4: Survey of developers.
http://www.infonomics.nl/FLOSS/report/ (accessed: 20 Nov 2002).

Hartley, J. F. 1995. Case studies in organizational research. In C. Cassell & G. Symon (Eds.),
Qualitative Methods in Organizational Research: 208-229. London: Sage.

Herman, K. A., Wolfson, M., & Forster, J. L. 1993. The Evolution, Operation and Future of
Minnesota Safplan - A Coalition for Family-Planning. Health Education Research, 8(3): 331-
344.

Hertel, G., Niedner, S., & Herrmann, S. 2003. Motivation of Software Developers in Open
Source Projects: An Internet-based Survey of Contributors to the Linux Kernel. Research
Policy, 32(7).

Himanen, P. 2001. In P. Himanen, L. Torvalds, & M. Castells (Eds.), The Hacker Ethic and
the Spirit of the Information Age. London: Random House.

Hong,T. 2001. Performance in decentralized filesharing networks, Presentation at the
O’Reilly Network Conference on Peer-to-Peer computing.

Indyk, D. & Rier, D. A. 1993. Grass-Roots Aids Knowledge - Implications for the Boundaries
of Science and Collective Action. Knowledge-Creation Diffusion Utilization, 15(1): 3-43.

Jargon File 2002. The on-line hacker Jargon File (version 4.3.3).
http://www.catb.org/~esr/jargon/html/index.html.

Knuth, D. E. 1969. The art of computer programming. Reading MA: Addison-Wesley.

Koch, S. & Schneider, G. 2000. Results from Software Engineering Research into Open
Source Development Projects Using Public Data. Wirtschaftsuniversität Wien.

Kohanski, D. 2000. Moths in the machine. New York: St. Martin's Press.

Kratwohl, D. R., Bloom, B. S., & Masia, B. B. 1964. Taxonomy of Educational Objectives,
the classification of educational goals– Handbook II: Affective Domain. New York: McKay.

Lakhani, K. & von Hippel, E. 2003. How Open Source works: "Free" user-to-user assistance.
Research Policy, Forthcoming.

- 37 -

Lave, J. & Wenger, E. 1991. Situated Learning: legitimate peripheral participation.
Cambridge: Cambridge University Press.

Lee, S., Moisa, N., & Wiess, M. 2003. Open source as a signalling device: An economic
analysis. http://opensource.mit.edu/papers/leemoisaweiss.pdf.

Lerner,J. and Tirole,J. 2000. The Simple Economics of Open Source. NBER Working Paper
Series Working Paper 7600. Cambridge MA, Harvard Business School.

Levy, S. 1984. Hackers: Heroes of the Computer Revolution. New York: Anchor Books.

Liebeskind, J. P. 1996. Knowledge, strategy, and the theory of the firm. Strategic
Management Journal, 17: 93-107.

McAdam, D., McCarthy, J. D., & Zald, M. N. 1988. Social movements. In N. J. Smelser
(Ed.), Handbook of Sociology: 695-737. Newbury Park CA: Sage.

McCarthy, J. D. & Zald, M. N. 1973. The Trend of social movements in America. Morristown
NJ: General Learning Press.

McCarthy, J. D. & Zald, M. N. 1977. Resource Mobilization and Social-Movements - Partial
Theory. American Journal of Sociology, 82(6): 1212-1241.

McPhail, C. & Miller, D. 1973. Assembling Process - Theoretical and Empirical Examination.
American Sociological Review, 38(6): 721-735.

McPhee, R. D. 1995. Alternate approaches to integrating longitudinal case studies. In G. P.
Huber & A. Van den Ven (Eds.), Longitudinal Field Research Methods: 186-203. Thousand
Oaks: Sage.

Melucci, A. 1999. Challenging codes: Collective action in the information age. Cambridge:
Cambridge University Press.

Meyer, M. H. & Lopez, L. 1995. Technology Strategy in A Software Products Company.
Journal of Product Innovation Management, 12(4): 294-306.

Moerke, K. A. 2000. Free speech to a machine? Encryption software source code is not
constitutionally protected "speech" under the First Amendment. Minnesota Law Review,
84(4): 1007.

Moody, G. 2001. Rebel code. Cambridge MA: Perseus Publishing.

Moon, J. Y. & Sproull, L. 2000. Essence of Distributed Work: The Case of the Linux Kernel.
First Monday, 5(11).

Myers, D. J. 1994. Communication Technology and Social-Movements - Contributions of
Computer-Networks to Activism. Social Science Computer Review, 12(2): 250-260.

Mykytyn, K., Mykytyn, P. P., Bordoloi, B., McKinney, V., & Bandyopadhyay, K. 2002. The
role of software patents in sustaining IT-enabled competitive advantage: a call for research.
Journal of Strategic Information Systems, 11(1): 59-82.

- 38 -

Nonaka, I. 1994. A Dynamic Theory of Organizational Knowledge Creation. Organization
Science, 5(1): 14-37.

Nonnecke,B. and Preece,J. 2000. Lurker demographics: Counting the silent, The Hague,
ACM. Proceedings of CHI 2000.

O’Mahony, S. 2003. Guarding the commons: How community managed software projects
protect their work. Research Policy, 32(7).

Oberschall, A. 1973. Social conflict and social movements. Englewood Cliffs, NJ: Prentice-
Hall.

Oliver, P. E. 1980. Rewards and Punishments As Selective Incentives for Collective Action -
Theoretical Investigations. American Journal of Sociology, 85(6): 1356-1375.

Oliver, P. E. 1993. Formal Models of Collective Action. Annual Review of Sociology, 19:
271-300.

Oliver, P. E. & Marwell, G. 1988. The Paradox of Group-Size in Collective Action - A
Theory of the Critical Mass .2. American Sociological Review, 53(1): 1-8.

Olson, M. 1965. The Logic of Collective Action: Public Goods and the Theory of Groups.
Cambridge: Harvard University Press.

Oram, A. 2000. Gnutella and Freenet Represent True Technological Innovation.
http://www.oreillynet.com/pub/a/network/2000/OS/12/magazine/gnutella.html.

Ostrom, E. 1998. A behavioral approach to the rational choice theory of collective action.
American Political Science Review, 92(1): 1-22.

Pavlicek, R. C. 2000. Embracing Insanity: Open Source Software Development. Indianapolis
IN: Sams.

Piven, F. F. & Cloward, R. A. 1992. Normalizing collective protest. In A. D. Morris & C. M.
Mueller (Eds.), Frontiers in Social Movement Theory. New Haven CT: Yale University Press.

Rabin, M. 1993. Incorporating Fairness Into Game-Theory and Economics. American
Economic Review, 83(5): 1281-1302.

Raymond, E. S. 1998. Homesteading the Noospere. First Monday, 3(10).

Raymond, E. S. 1999. The Cathedral and the Bazaar. O’Reilly.

Reynolds, B. 1965. Learning and Teaching in the Practice of Social Work. New York:
Russell and Russell.

Risan, L. 2001. Hackers produce more than software, they produce hackers (Version 2.1).
http://folk.uio.no/lrisan/Linux/Identity_games/ (accessed: 12 Dec 2002).

Rowley, T. J. & Moldoveanu, M. 2003. When will stakeholder groups act? An interest- and
identity-based model of stakeholder group mobilization. Academy of Management Review,
28(2): 204-219.

- 39 -

Schoonhoven, C. B. 2003. Perspectives on open source software development. Organization
Science, 14(2): 208.

Simon, E. 1996. Innovation and intellectual property protection: The software industry
perspective. Columbia Journal of World Business, 31(1): 30-37.

Snow, D. A. & Benford, R. D. 1992. Master-frames and cycles of protest. In A. D. Morris &
C. McClurg (Eds.), Frontiers in Social Movement Theory: 133-154. New Haven: Yale
University Press.

Snow, D. A., Zurcher, L. A., & Ekland-Olson, S. 1980. Social Networks and Social-
Movements - A Microstructural Approach to Differential Recruitment. American Sociological
Review, 45(5): 787-801.

Stake, R. E. 1995. Case Studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of
Qualitative Research: 236-247. Thousand Oaks: Sage Publications.

Stephan, P. E. 1996. The economics of science. Journal of Economic Literature, 34(3): 1199-
1235.

Strauss, A. & Corbin, J. 1990. Basics of qualitative research: Grounded theory procedures
and techniques. London: Sage Publications.

Taylor, M. & Singleton, S. 1993. The Communal Resource - Transaction Costs and the
Solution of Collective Action Problems. Politics & Society, 21(2): 195-214.

Tilly, C. 1978. From mobilization to revolution. Reading, MA: Addison-Wesley.

Torvalds, L. & Diamond, D. 2001. Just for Fun: A story of an Accidental Revolutionary. New
York: Harper Business.

Tuomi, I. 2002. Networks of Innovation. Oxford: Oxford University Press.

Useem, B. 1998. Breakdown theories of collective action. Annual Review of Sociology, 24:
215-238.

von Hippel, E. & von Krogh, G. 2003. Open source software and the "private-collective"
innovation model: Issues for organization science. Organization Science, 14(2): 209-223.

von Hippel,E., von Krogh,G., Lakhani,K., and Spaeth,S. 2002. Innovation in Open Source
Software: An intellectual history of Freenet.

von Krogh, G., Spaeth, S., & Lakhani, K. 2003. Community, Joining, and Specialization in
Open Source Software Innovation: A Case Study. Research Policy, 32(7).

Waterson, P. E., Clegg, C. W., & Axtell, C. M. 1997. The dynamics of work organization,
knowledge and technology during software development. International Journal of Human-
Computer Studies, 46(1): 81-103.

Wayner, P. 2000. Free for All: How Linux and the free software movement undercut the high-
tech titans. New York: Harper Business.

- 40 -

Wenger, E. 1998. Communities of Practice: Learning, Meaning, and Identity. Camebridge:
Camebridge University Press.

Yin, R. K. 1994. Case Study Research: Design and Methods. Thousand Oaks: Sage
Publications.

Young, G., Smith, K. G., & Grimm, C. M. 1996. ’’Austrian’’ and industrial organization
perspectives on firm-level competitive activity and performance. Organization Science, 7(3):
243-254.

i When referring to open source projects we also include free or libre software projects which we consider

similar enough for our study to be treated as equivalent. For easier readability, however, we will only use the

term open source throughout the text.

ii Hacker: [originally, someone who makes furniture with an axe] 1. n. A person who enjoys exploring the details

of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn

only the minimum necessary. 2. One who programs enthusiastically (even obsessively) or who enjoys

programming rather than just theorizing about programming. … 8. [deprecated] A malicious meddler who tries

to discover sensitive information by poking around. Hence `password hacker', `network hacker'. The correct term

for this sense is cracker. (Jargon File, 2002)

iii
 Source code consists of program instructions written in their original form using a programming language

readable to humans, such as Pascal, C++, Java or FORTRAN. To execute a program on a computer the source

code is translated into machine code using a compiler. Machine code consists entirely of numbers and is only

readable by the computer.

iv
 The term copyleft was first used in this context by Richard Stallman who had once received a letter which had

several amusing sayings on it, including this one: “Copyleft -- all rights reversed.”

v
 Selective incentives derive their name from the way they are put to work: to target individual, potential

beneficiaries, encourage their contribution to the public good, and punish their defection.

vi
 In some cases, the production of knowledge can be central to the social movement's success For example, a

movement attempting to impose rigid governmental control of research in human genomics through lobbying

might fund studies that closely investigate the social and moral implications of such research. For this, they

might allocate a part of the monetary resources accumulated to research institutes specializing in this type of

studies. Eventually, society might benefit directly from the political actions of the social movement, but

indirectly also from knowledge diffusion.

- 41 -

vii Michael Cusumano’s seminal analysis of commercial software shows that software production evolves within

certain parameters, such as product generations, financial resources, time lines, and the capacity of developers.

However the process is also fraught with uncertainty, frequent trials, rescheduling, and so on (Cusumano, 1992;

Cusumano and Yoffe, 1998; Cusumano and Selby, 1995).

viii Research has also uncovered various strategies for recruiting, that fit such a goal (see Benford, 1993; Snow

and Benford, 1992)

ix As a specific example of a project with an emergent goal, consider the beginnings of what became the Linux

Open Source software project. In 1991, Linus Torvalds, a student in Finland, wanted a Unix operating system

that could be run on his PC equipped with a 386 processor. Minix was the only software available at that time

but it was commercial, closed source, and it traded at USD 150.-. Torvalds found this too expensive, and stared

development of a Posix-compatible operating system, later known as Linux. Torvalds did not immediately

publicize a very broad and ambitious goal, nor did he attempt to recruit contributors. He simply expressed his

private motivation in a message he posted on July 3, 1991, to the USENET newsgroup comp.os.minix (Wayner,

2000: 55) as follows: Hello netlanders, Due to a project I’m working on (in minix), I’m interested in the posix

standard definition. [Posix is a standard for UNIX designers. A software using POSIX is compatible with other

UNIX-based software.] Could somebody please point me to a (preferably) machine-readable format of the latest

posix-rules? Ftp-sites would be nice. In response, Torvalds got several return messages with Posix rules and

people expressing a general interest in the project. By the early 1992, several skilled programmers contributed to

Linux and the number of users increased by the day. Today, Linux is the largest Open Source software project

extant in terms of number of developers, and in the server software market it is second to Microsoft in terms of

servers that use it.

x The option of free-riding usually prevents the optimal supply of a public good from the outset by providing

negative incentives for the contributors. Free riders as such are of no harm since public goods are by definition

non-rivalrous in consumption

xi Peer-to-peer software leads to a type of network in which each workstation has equivalent capabilities and

responsibilities. In contrast, the traditional network grounds on client/ server software and architecture, in which

some computers are dedicated to serve the others. Other peer-to-peer technologies include Gnutella and Napster.

Unlike Napster, Freenet does not require a central and operating server for file exchange. Freenet also handles

file sharing by storing copies on local servers as the files travel backwards in the network towards the requesting

node. This makes the technology more efficient than Gnutella, as when a certain type of information gets

requested often, it will be located in the vicinity of the requesting node.

xii See at http://geocrawler.org/ or http://sourceforge.net/

xiii Lurker: n. One of the ‘silent majority’ in an electronic forum; one who posts occasionally or not at all but is

known to read the group's postings regularly (…).(Jargon File, 2002; see also Nonnecke and Preece, 2000)

- 42 -

xiv FAQs can be found at the projects website at: http://freenetproject.org/

xv For example by Wired News with Ian Clarke published on October 29, 2002 (http://www.wired.com/

news/technology/0,1282,56063,00.html), or by BBC News published on March 12, 2001 (http://news.bbc.co.uk/

1/hi/sci/tech/1216486.stm), or by Cnet News on October 28, 2002 (http://news.com.com/2102-1023-

963459.html)

xvi
 Also spelled “/. effect” is the phenomenon of a website being virtually unreachable because too many people

are hitting it after the site was mentioned in an interesting article on a popular news service like Slashdot.org,

linuxtoday.org, or freshmeat.org. (adapted from Jargon File, 2002)

xvii
 A possible source of confusion may stem from the term “resource” as we use it. Whereas

“resources” in resource mobilization theory denote the object of mobilization (knowledge, time, effort, labor),

the communal resources refer to the potential, communally accessible benefit awaiting the actor who contributes

to the collective action, in our case to the Open Source project.

xviii
 patch: 1. n. A temporary addition to a piece of code, usually as a quick-and-dirty remedy to an existing bug

or misfeature. A patch may or may not work, and may or may not eventually be incorporated permanently into

the program. ... 2. vt. To insert a patch into a piece of code. (Jargon File, 2002)

xix
 One should note, however, that Freenet being a public good would not exclude a potential third party to

download the software, and then to start parallel development on her own. This phenomenon where somebody

starts up a competing project using existing source code as a basis, is known as forking. Forking has been

observed in other Open Source projects, such as Open Source Unix (Wayner, 2000), but we have not observed

forking in the case of Freenet, and we did not see any mentioning of a threat to fork Freenet.

xx
 A thread consists of a series of e-mails (one mail plus the corresponding answers to it), normally following the

same mail heading.

xxi
 We do not distinguish between open source and Fee/libre software projects in our study. But as recent surveys

have shown, do especially Free software developer emphasis the differences in their moral and ethical attitude. It

might be necessary to examine whether communal resource are equally valid for both types of software

development projects (Gosh et al., 2002).

