
The FLOSSWALD Information System on Free and Open Source Software
Meike Reichle & Alexandre Hanft

University of Hildesheim
Institute of Computer Science

Intelligent Information Systems Lab
D-31141, Hildesheim, Germany

meike.reichle|alexandre.hanft@uni-hildesheim.de

Abstract

We propose the implementation of an intelligent
information system on free and open source soft-
ware. This system will consist of a case-based
reasoning (CBR) system and several machine
learning modules to maintain the knowledge base
and train the CBR system thus enhancing its per-
formance. Our knowledge base will include data
on free and open source software provided by
the Debian project, the FLOSSmole project, and
other public free and open source software direc-
tories. We plan to enrich these data by learning
additional information such as concepts and dif-
ferent similarities. With this knowledge base, we
hope to be able to create an information system
that will be capable of answering queries based
on precise as well as vague criteria and give in-
telligent recommendations on software based on
the preferences of the user.

1 Introduction
In the beginning of free and open source software, these
programs were mainly written for their developers’ own
needs or those of their communities. This has produced
a large and diverse range of software wich often offers
numerous alternatives for the same task, such as text
editors, e-mail clients or web browsers. Also because of
this existing project descriptions are mostly technically
phrased and focus on the project’s technological features.

However, in order to chose from a range of available
software especially less experienced computer users
mainly ask for qualitative attributes such as usability,
stability and an agreeable look. Already existing software
directories also offer mainly technically oriented search
possibilities. What’s missing here is the link between the
user’s qualitative expectations and the technical attributes
of a project.

We believe it is possible to learn to translate these
qualitative attributes into a set of technical features. Our
plan is to design and implement an information system on
free and open source software, FLOSSWALd, that offers
searches by technical as well as qualitative attributes.
The system’s knowledge base will consist of software
descriptions, improved with tags and user feedback on the
results.

First, we illustrate our motivation to launch FLOSS-
WALD. Section 2 introduces the idea behind FLOSS-
WALD, including a first analysis of the available data
sources. Section 3 presents related work that we have ex-
amined in the course of the project’s creation. This paper
closes with a conclusion and an outlook in section 4.

1.1 Motivation
Since its first public emergence, free and open source
software has steadily gained more popularity. What first
was an elaborated hobby among computer scientists, has
today found its way to a much larger community, including
less experienced computer users. With this increasing
amount of users and of course also developers there has
also been an increasing demand for information on that
matter.

The Free and Open Source Software Community
however is a complex social and technical network that
consists of hundreds of thousands of individual groups and
projects. Since the large majority of these projects is non-
commercial, they usually don’t engage in advertisement
or public relations but focus on technical development and
community contacts.

This has created a wide supply of free and open source
software in all degrees of quality, from low class to very
high grade, but most of it only known to its users, other
insiders or those who know where and how to search for
it. But the popularity of free and open source software
is rising, and a growing number of computer users who
have just recently begun using some of the most popular
free and open source software such as the Firefox browser
or the Thunderbird e-mail client are now considering to
exchange also other programs for a free and open source
alternative. These computer users usually only know very
few isolated projects and don’t know about the actual free
and open software scene.

Free and open source software is not limited to private
users though. With the increasing cost of commercial
suites and the ongoing need to reduce costs, free and
open source business and server applications such as the
Apache HTTP server or the mysql database management
system have already gained a substantial market share.
The Netcraft web server survey for July 2006 [Netcraft
2006] shows a 63.09% share for the Apache web server,
followed by Microsoft’s IIS with 29.48%.

This rising interest in free and open source software also
creates a new need for information on free and open source

229

FGWM 2006



software projects and their nature and quality. However,
knowledge about this topic is still very much restricted to
insiders who are themselves active in the Free and Open
Source Software Community. While simple technical
questions such as “What database does application XY
use?” are sufficiently easy to answer using e.g. web
search machines, more vague questions such as “What
is the right e-mail client for me” or “Which GNU/Linux
distribution should I put on my small company’s web-
server?” are a much harder task. Such questions
don’t only need technical information but also meta
information such as how old or established a project is,
how many users or developers it has, how mature its code
base is, or how reliable it is to still be around in a few years.

Existing information services such as Freshmeat or
Sourceforge rely heavily on technical criteria and language
and are thus of only small use to inexperienced users.
As a consequence, we plan to implement an intelligent
information system that meets this need by offering more
intuitive search criteria and intelligent search tools based
on user preferences and learned similarities between
software or user groups.

1.2 A note
In this paper we use the term “free/libre and open source
software” in order to include both, the Open Source and
the Free Software community. The term free in this text
is thus not understood as “for no cost” but in the sense of
freedom, meaning

[...] the users’ freedom to run, copy, distribute,
study, change and improve the software. [FSF
2004]

2 The FLOSSWALD Project
First we introduce the project and describe the investigated
data sources for our knowledge base: Debian packages,
DebTags, Debian changelogs, the Debian bug tracking sys-
tem and the FLOSSmole project followed by a disscussion
of their adequacy. The last part of this section presents the
planned implementation as an instatiation of a more gen-
eral framework for knowledge-based systems.

2.1 Concept
FLOSSWALD, the Free/Libre Open Source SoftWare and
AppLication Directory, is a project proposal that aims
to use a case-based reasoning system that includes infor-
mation about the individual softwares in its knowledge
base. We decided to us a case-based system, because we
are dealing with vague criteria and use a large collection
of individual information entities. The system is further
equipped with several machine learning components that
are meant to improve system performance by creating addi-
tional knowledge in the form of concepts, e.g. user groups
or similarities (such as “of a similar kind” or “do the same
task”), from the provided data.

2.2 The Knowledge Base
The knowledge base will be developed in three stages, each
integrating a new data source. Our first data source will be
the Debian GNU/Linux package repository. This repos-
itory offers several sources of information on software,
which will be elaborated in the following sections. Sec-
ondly, we will extend our knowledge base to also include

data from other free and open source software directories,
such as Freshmeat, Sourceforge or Savannah. For these
data it would be possible to cooperate with the FLOSS-
MOLE project [Howison et al. 2006] that provides raw
data, mined at Freshmeat, Sourceforge, ObjectWeb and
Rubyforge and also from donated data by other research
teams. These data can be used to enrich the information al-
ready gathered in stage one. In the last stage, we hope that
the FLOSSWALD project will have gathered enough mo-
mentum to also attract software authors, maintainers and
users themselves and offer them a way to complete and up-
date our data on their projects or enter new projects as they
arise.

The Debian Project
Debian GNU/Linux is a free operating system, that is de-
veloped by more than a thousand volunteer developers
and many more contributors such as package maintainers,
translators and documentation writers all over the world,
who collaborate mainly via the Internet. Debian is distin-
guished from other GNU/Linux distributions primarily by
its overriding commitment to the principles of Free Soft-
ware as laid down in its “Free Software Guidelines” [De-
bian 1997], its non-profit nature, and its open development
model. Debian GNU/Linux is a binary Linux distribution,
which means that it takes existing free software, “pack-
ages” it and provides those packages to be installed on the
user’s system. So instead of installing or compiling a piece
of software a user downloads and installs the according
package.

Debian GNU/Linux has, due to its age and popularity,
probably the largest selection of prepackaged free and open
source software of all GNU/Linux distributions. The De-
bian package repository 1 currently (as of July 2006) holds
15,660 binary packages and 9,053 source packages in its
stable release. This number is still growing, for the upcom-
ing release the package repository currently holds 17,583
binary packages and 10,228 source packages. And, what’s
most important, all of these packages come with a textual
description, such as the example in Fig. 1.

These descriptions already offer a great wealth of
information. The textual description can be analyzed with
different information retrieval tools, extracting important
terms or finding similar descriptions in other packages.
The package’s size, dependencies, section and priority can
also provide conclusions on its suitability for an existing
system, its nature or purpose. Additionally to this, the
Debian package repository offers several other sources of
information.

DebTags [Zini 2005] is a project started by Enrico
Zini. Those tags are shown alongside package descrip-
tions where available (Fig 1, last two lines) and give
meta information on the software. The tags include
numerous different ontologies representing different
“perspectives” such as what the software is used for,
what interfaces are used, what role the software has
(server, client), its programming language, used protocols
and many others. DebTags are in a machine readable
format and thus allow for smarter search and navigation
interfaces than the original full text Debian package search.

Debian further collects detailed anonymised usage data
on its packages. Debian GNU/Linux users can voluntarily

1http://packages.debian.org

230

LWA 2006



Package: 3dchess

Priority: optional

Section: games

Installed-Size: 136

Maintainer: Debian QA Group <packages@qa.debian.org>

Architecture: i386

Version: 0.8.1-12

Depends: libc6 (>= 2.3.6-6), libx11-6, libxext6, libxmu6,

libxpm4, libxt6, xaw3dg (>= 1.5+E-1)

Filename: pool/main/3/3dchess/3dchess 0.8.1-12 i386.deb

Size: 33564

MD5sum: fecee217870b621286f75e528496d3b1

SHA1: 88343e19f566cf5cd11ef099bad97fbabf4e316d

SHA256: 3601709708044f7e489a0a74dbe4aca0e04b2fe1bc

533655b268af36fb6abd2c

Description: 3D chess for X11

3 dimensional Chess game for X11R6. There are three boards,

stacked vertically; 96 pieces of which most are the

traditional chess pieces with just a couple of additions;

26 possible directions in which to move. The AI isn’t

wonderful, but provides a challenging enough game to all but

the most highly skilled players

Tag: game::board:chess, interface::3d, use::gameplaying,

x11::application

Figure 1: The package description of a Debian package

install a program called popularity contest2 (popcon) that
sens anonymised reports to the Debian project indicating
what packages are installed on a user’s system and when
they have been used the last time. These data allow a first
take on e.g. the popularity of a particular software or – if
analysed on a per user basis – what softwares are often
used together.

Debian Changelogs and the bug tracking system 3: Ev-
ery Debian package has a changelog where all changes or
updates on the package are noted, the Debian bug track-
ing system is used by developers, maintainers and users to
report problems or bugs of a piece of software and moni-
tor these reports and their solutions e.g. by patches or new
versions. Both these sources can give information on the
up-to-dateness and stability of a package.

The FLOSSmole Project
The FLOSSmole (formerly OSSmole) project is a collabo-
rative project

[...] designed to gather, share and store com-
parable data on and analyses of free and open
source software development for academic re-
search. [Howison et al. 2006, S.1]

Its aim is to create a trusted dataset for research com-
munities dealing with free and open source software, such
as the TREC dataset [TREC 2005] in the information
retrieval community or the UCI repository in machine
learning [Newman et al. 1998]. As a collaborative project
FLOSSmole expects its users to give back any improve-
ments or additional scripts that are created when using the
provided data.

In order to achieve this the FLOSSmole project identi-
fied several key requirements [Howison et al. 2006], that it

2http://popcon.debian.org/
3http://bugs.debian.org/

aims to comply with: Firstly, the collected data is required
to be easily available, without a lengthy requisition proce-
dure or having to deal with complicated repositories, such
as versioning systems. This is achieved by offering simple
unmonitored web downloads. Furthermore, the provided
data has to be comprehensive and compatible, offering
different timestamped versions in order to allow historic
comparisons and also comparisons between different free
and open source projects or repositories by including
mappings between the different databases.

FLOSSmole gathers its data both by web spidering
and also by using the project directory’s database dumps
where available. These datasets are then “cleaned”: Where
databases are available they have to be restructured, since
they all use their own structure and attributes, the indi-
vidual attributes have to be mapped to their respective
counterparts in other repository’s databases. Spidered data
have to be checked and cleaned of false input, redun-
dancies and the like. In the above mentioned reposito-
ries (Freshmeat, Sourceforge, ObjectWeb and Rubyforge)
FLOSSmole mines different data, including project data
(name, programming language, platform, operating sys-
tems, intended audience, project topics) and developer-
related data (number of developers, their contact informa-
tion and roles). Additionally FLOSSmole mines on the bug
tracking systems of Sourceforge, Savannah, Freshmeat and
the Apache Foundation, collecting information on bugs,
such as when they were opened and closed, their priority
and status over time.

All of these data are available as raw database dumps and
may be used freely by scientific projects dealing with free
and open source software.

Using these data we intend to map the respective projects
to their developed software and thus extend the already
existing cases with new attributes or create new we cases
where necessary.

2.3 Adequacy of the Data Sources
We believe that the presented data sources are adequate for
an information system such as the one we are planning. In
order to serve as a knowledge base for a CBR system, the
data provided needs to be correct with respect to content,
of a sufficient supply as well as structured and in a simple
format. Regarding the Debian packages, the correctness
of the data may be assumed since they are taken directly
from a working system and the Debian policy tells package
maintainers to describe their packages in a neutral and
objective way. Debian’s open development model further
supports their correctness. Also, all information on the
Debian packages is freely available in a structured pure
text file and can thus easily be worked with or stored, e.g.
into a database. The same goes for the data provided by the
FLOSSmole project which can be downloaded as a pure
text database dump and are also collaboratively reviewed
and updated.

Of course the knowledge base of our information system
will be incomplete in the beginning. Based only on the De-
bian packages during the first stage it will miss software
that e.g. only runs on Microsoft Windows or software that
is not packaged for Debian for other reasons, e.g. because it
has a license considered non-free by the Debian Free Soft-
ware Guidelines. Also we will have to evaluate which at-
tributes are provided by the respective sources, how they

231

FGWM 2006



can be mapped or converted, which of them are useful to
us and whether we might have to create or extract addi-
tional information such as user ratings or associated user
groups/categories.

2.4 Integration into a Knowledge-Based System
Due to the heterogeneity and the large amount of free and
open source software, it seems to be appropriate to use
case-based reasoning to give the user advice according to
their vague descriptions and (soft) constraints. In such a
case-based reasoning system, each software project should
be represented by an individual case. Additionally, users
should have the option to tag already known software with
freely chosen tags to enrich the software descriptions with
attributes that conform better with most users’ level of
abstraction than the mostly technical information we get
from the afore mentioned sources. To finally create the
“link” between more formal project descriptions and the
vague descriptions from the users’ perspectives we plan to
use machine learning technology.

In order to query the system a flexible input mask is
offered that allows giving information on what (type of)
operating system is used or what other software is already
installed. In order to not overload the user interface the
according menus would be optional so that if the user
choses to give a particular information e.g. Browser this
would then open a drop down menu including a list of
browsers to chose from. Further on, the user has the
possibility do define precise as well as vague requirements,
with the vague ones including points such as “Runs on
slow computers”, “Language can be switched” or “Easy
to install”. These more intuitive requirements would
then be mapped to actual technical queries, e.g. “Easy
to install” would be true if the project provides prebuilt
binaries and an installing mechanism for the user’s oper-
ating system. It should also be possible to prioritise those
requirements. Additionally to these options the user can
also give keywords for a free text search that will either
be conducted over the full software information or only
on selected fields. The user will be free to choose from
these and probably also other options and combine them
to create a query that best represents his or her information
need.

FLOSSWALD is obviously a knowledge-based system,
because most of the functionality FLOSSWALD should
provide depends on knowledge and its processing. [Althoff
et al. 2006] presented a framework for knowledge-based
systems (KBS) that appears to be promising for realising
FLOSSWALD. Their underlying idea is to once implement
a highly flexible knowledge based system, that is then re-
configured for different use cases, instead of every time
building a new system from scratch. To achieve this goal
[Althoff et al. 2006] combine case-based reasoning, experi-
ence factory approaches, software product-lines and agent
technology within one architecture for knowledge based
systems.

Within this KBS architecture different components are
responsible for usage and maintainance. This complies
with our scenario where some users search the system
for advice on a software while others update project
descriptons or enter new ones. All of these tasks are
associated with different roles within the system and are
carried out by a software agent, possibly supervised by

a human operator, depending on how easy the according
task can be automated. This again corresponds to our
estimation that also plans to first maintain the knowledge
base and its content by hand but automate this process
using machine learning technologies once the knowledge
base is sufficiently large and enough correct training data
has been created.

Mapping this KBS concept to our concept of the FLOSS-
WALD project would result in a setup as illustrated in
Fig 2: FLOSSWALD, as user interface of the whole
knowledge-based system, is located in the system tier and
interacts with the users. It uses a CBR-Agent1 for retrieval.
The CBR-Agent1 itself accesses the case base1 inside the
knowledge access tier. The maintainance which includes
taking care of the case base and similarities for retrieval
is done separately under the hood of a case factory rep-
resented by CFM Agent1 in the maintenance and build-
up tier. The case factory itself incorporates several roles
like case manager or libriarian. It uses the services of a
machine learning agent2 for discovering the relationships
between technical features and qualitative attributes. The
CBR-Agent1 and the machine learning agent2 both pro-
cess knowledge intensive tasks and are thus located in the
knowledge worker tier.

Figure 2: The FLOSSWALD concept mapped on a KBS

3 Related work
Existing information systems on free and open source
software include Freshmeat, GNU Savannah,Berlios and
Sourceforge. Many of these directories (e.g. Savannah,
Berlios and Sourceforge) also offer development infras-
tructure such as web space, mailing lists, version control
systems, bug tracking systems, or wikis. Those directories
thus only include information on projects they also host.
This has led to a certain redundancy since many projects
registered with e.g. Sourceforge, so they are listed there
but do not use the provided infrastructure but their own.

232

LWA 2006



A system that is rather close to our concept is the
FSF/UNESCO Free Software Directory which follows the
same purpose. It, however, only includes software that
runs on free operating systems. The FSF/UNESCO Free
Software Directory is also a collaborative project, offering
a web interface for users to enter and update entries. Since
it did not import any data but only relies on user input the
directory so far only holds around 5,000 entries. Efforts to
raise this number are made, e.g. by introducing contests.

There is also a commercial information service on free
and open source software, ohloh.net. It currently lists
almost 4,000 open source projects. Ohloh’s approach
is different to that of the FSF/UNESCO Free Software
Directory or ours. It mines all its data automatically and
has as data source the projects’ source code and version
control systems. Because of this, their information is
mainly focused on the projects code base. There are also
a tags, that are used to display related projects. For each
indexed project ohloh.net lists general information such as
the age of the project, the number of developers, and its
main programming language. Beside that it offers a feature
called Codebase Cost that allows the user to calculate how
much it would have cost to have that code written, based
on lines of code, man years and a freely selectable yearly
salary. Further on the site presents license information
and several diagrams, illustrating the amount of lines of
code and the activity of the projects’ developers, also
measured in lines of code. Because of this these numbers
and diagrams only provide a measure of the effort that has
been put into a particular software. Other information such
as its quality or usability have to be infered from the other
presented data by the user himself.

[Althoff et al. 1999] have created an information system
that is designed as an experience factory and holds infor-
mation on CBR technology and tools. This system is also
based on a CBR system that can be queried and updated
over a web interface. This system gave the original idea for
the FLOSSWALD and we hope to be able to reuse some of
the experiences made in the development of this system.

4 Conclusion & Outlook
We are confident that FLOSSWALD will be of great use to
computer users new to free and open source software, who
will most likely do vague searches, based on similarities
or ratings as well as to experienced users who are search-
ing with highly defined criteria such as required libraries or
avoiding particular technologies or protocols. Our first step
will be to evaluate the data provided by the Debian project
and the FLOSSmole project and design a knowledge base
and case structure to flexibly work with them. Then we
plan to prepare and implement a CBR system based on
the knowledge-based systems framework that is able to
deal with the provided information and define the particu-
lar components (such as the maintenance of the knowledge
base) where machine learning modules can be used to im-
prove the system’s performance.

Once the knowledge base is sufficiently large, the answer
quality of the query system is satisfying and the project
has hopefully gained some publicity, the last step will be
to open up the project towards collaborative maintainance
and implement a mechanism that allows users and software
autors or maintainers to exert influence on the knowledge
base itself by updating existing cases or adding new ones.

To this end we will not only have to develop the technical
means to actually edit the case base but also an adequate
quality assurance mechanism to furtheron ensure the cor-
rectness of the data. As a basis for this we will use [Hanft
and Minor 2005].

5 Sources and References
[Althoff et al. 1999] Althoff, K.-D., Nick, M., Tautz, C.
(1999). CBR-PEB: An Application Implementing Reuse
Concepts of the Experience Factory for the Transfer of
CBR System Know-How. In Proceedings of the Seventh
Workshop on Case-Based Reasoning during Expert Sys-
tems ’99 (XPS-99), Wuerzburg, Germany.

[Althoff et al. 2006] Althoff, K.-D., Hanft, A. & Schaaf,
M. (2006). Case Factory – Maintaining Experience to
Learn. M. Göker & T. Roth-Berghofer (eds.), Proc. 8th
European Conference on Case-Based Reasoning (EC-
CBR’06), LNCS 4106. Springer Verlag. pp 429-442.

[Debian 1997] Debian Project (1997). The Debian Free
Software Guidelines (DFSG).
http://www.debian.org/social contract#guidelines
last visited: 07/23/2006

[FSF 2004] Free Software Foundation, Inc
(2004). The Free Software Definition at
http://www.fsf.org/licensing/essays/free-sw.html.
last visited: 07/25/2006

[Hanft and Minor 2005] Alexandre Hanft, and Mirjam
Minor. A Low-Effort, Collaborative Maintenance Model
for Textual CBR. In Steffi Brninghaus (eds), ICCBR 2005
Workshop Proceedings, pages 138 – 149, August 2005,
DePaul University, Chicago, USA.

[Howison et al 2006] Howison, J., Conklin, M., Crow-
ston, K. (2006). FLOSSmole: A Collaborative Repository
for FLOSS Research Data and Analyses. International
Journal of Information Technology and Web Engineering.
1(3). July-September, 2006. pp 17-26.

[Netcraft 2006] July 2006 Web Server Survey at
http://news.netcraft.com/archives/2006/06/28/
july 2006 web server survey.html. last visited:
07/25/2006

[Newman et al 1998] Newman, D.J. & Het-
tich, S. & Blake, C.L. & Merz, C.J. (1998).
UCI Repository of machine learning databases at
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Irvine, CA: University of California, Department of Infor-
mation and Computer Science. last visited: 07/25/2006

[TREC 2005] The Fourteenth Text REtrieval Con-
ference (TREC 2005) in Gaithersburg, Maryland,
National Institute of Standards and Technology (NIST), at
http://trec.nist.gov/pubs/trec14/t14 proceedings.html. last
visited: 07/25/2006

[Zini 2005] Zine, E. (2005). A cute introduction to Deb-
tags at http://debtags.alioth.debian.org/paper-debtags.html.
Last visited: 07/25/2006

233

FGWM 2006


